Data analysis

What is data analysis? (for us)
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1.- Scientific method: modelling, quantify falsifiability of Hypothesis

Is there a peak?

2.- Learn from the parameters of the model

What is the mass?



Data analysis

What is data analysis? (for us)

1.- Classical data analysis: STATISTICS
Numbers

2.- Non-classical data analysis: PROBABILITY (Bayes theorem)
Probability distribution functions




Statistics: basic definitions

Population (N members): ALL members under study: all students from UPC
Sample (n members): a subset of the whole population: the people sitting in this room

Random variable: X coming from a random phenomenon
it can take the values x, =X, , X, , X3 ,...

Probability distribution function (pdf):

discrete case continuous case

P(X =x)=f(x) P(X =x)=1(x)
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Statistics

. definitions
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discrete case

P(X =x)=f(x)

Histogram
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... and for any function of g(X) like X?

E(X) = g()P(X =x)
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continuous case

P(X =x)= f(X)

Normal Probability Density
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Statistics: definitions

“Location” of data

“Spread” of data

Average or mean

Mean square deviation or
sample variance
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Some defintions about PDF’s

Let’s consider a PDF: A
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a b
Relation with probabilities

p(a<x<b)=J‘f(x)dx

Therefore

Tf(x):l

P-value for b (one side) p(x>b)= _[ f (x)dx “‘g‘
b




Some typical PDF’s

S 1 (X—,u)2

o f(X)=—+—— -

&7 % 270, exp[ 20" j
. f(0=N(u,0)

Relation with probabilities

p(-0, <x<o,)= [ f(x)dx=682%

P-value for normal distribution for a value a: is related with the variance

D(—0, <X<0,)= j f (x)dx = 68.2%
So we have a relationship between ”error”_gnd probability!

There is a 68,2% of chances that your real value is inside your “error “

(assuming that x has a normal distribution;-)



Standard Normal distribution (u=0, 6=1)
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Standard Normal distribution

f(x)=

X

j }: f(z)=

Z follows a standard normal distribution function...
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a flavour of fitting

How to obtain the value of u from data?
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In orther to obtain the value of u, when x 1s normal distributed,
we have to minimize the quantity:

2

X_
7% = H
O

X

Least squartes fitting strategy



Central limit theorem

pA Gaussian
samples
of size n
X
X

— | —:
X XX

population
distribution

sampling distribution
of the mean

The distribution of the mean tends to be gaussian when increasing n
no matters the pdf that originated the mean!!!!

This is the good and the bad thing from statistics is based on the normal PDF!!!!



t-Student distribution

v
GUINNES

Imagine we do not know g, i.e. the error of the data... shall we panic? NO, take a Guiness!
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And it depends only on the degrees of freedom (number of points for the moment).
And of course tends to the Normal distributin for k big N(0,Vk)



t-Student distribution

Usefull to compare two mean values (if they follow a Normal distribution!!!)
Lets assume that the degrees of freedom of X and Y are m and n , then
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And it depends only on the degrees of freedom (number of points for the moment)



generalized t-Student distribution

Usefull (agaion)to compare two mean values (if they follow a Normal distribution!!!)

but now imagine that a variable X that can be expressed as

X =u+d6T where T follows a T-student distribution (might be positive or negative!!)
where 4 is a scale factor

T = follows therefore a T-student distribution with n degrees of freedom

.. it can be proved that &~ = var(X) for n large enough,
and thus is sometimes assumed as “the error”in p (-sic-)

and for large n will be the same as for the Normal distribution with o=vn

We can therefore compare X (with an “error”) with a fixed value n



Chi-Squared distribution

Do you remember the normal distribution:

f(x)= 27170 exp[—;[x;’uJ J:> f(z)=

We minimize Z? in order to find p... the following question arises:

: ex (—lzzj
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What is the PDF for Z? itself?



Chi-Squared distribution

2 2 2 2 2
If X; follow a standard normal distribution then X =X+ X+ X7+ 4+ X

follow a so called y? distribution with n degrees of freedom defined as:

1
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If k=»oo then Zm follows a standard normal distribution , i.e. 2 follows N(k,v2k)



F distribution

Usefull to compare two variances (again if they come from a Normal distribution!!!)

Lets assume that Z,? and Z,2 follow a chi-square distribution... then:
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follows an F distribution defined as

f(u)
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f(U) = A-u%_l(vz +vu) 2




Poisson- distribution

Let’s imagine we perform a counting experiment, we might ask:

What is the probability that n neutrons hit the detector in one hour?
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Let’s imagine we perform a counting experiment, we might ask:

Poisson- distribution

What is the probability that n neutrons hit the detector in one hour?
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Which is not a Gaussian distribution... but as always, if k is large enough
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The dumb rule o=vn comes from the poisson distribution!!



Summarizing

t-distribution:

N(z,/n)

( )
Normal (Z): Central limit theorem
Usefull to compare two values A and B when error o=variance is known

N(u.0) i
(Xz-distribution: Distribution for Z? or for a sumation of v (degrees of freedom)
N (V @) Usefull to perform fitting

b
. J
(. )

“central limit theorem” for small n

Usefull to compare two values A and B when error o=variance is unknown
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F-distribution: Usefull to compare variables that follow a y? distribution h
Usefull to compare the “errors” of A+o, and Btoy,

J
- : : : : ™
Poisson-dist: PDF for a counting experiment (assuming n counts)
N (ﬂ,ﬁ )
G J




Fitting data: least squares
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1.- Parameter estimation
2.- Modelling (Hypothesis testing)

Goal: to minimize the “total distance” of n exp. points d;+d,+... d_ to the model

or more seriously.... to minimize the following variabel that follows a y>-distribution
and therefore D is normally distributed around H

Where D, are the data pints, and H, are the model expected values (Hypothesis)

... since for n large a y2-distribution for point i tends to a gaussian with g=n=H.

5 n Di_HiZ n Di_HiZ
p :é( - ) ﬁé( ! )



Fitting data: parameter estimation

y =a+bx
After minimization of y? and defining

A=nyx (5]
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REMEMBER: EVERYTHING MUST BE NORMALLY DISTRIBUTED!!!!!
Data around H, and therefore also the obtained parameters aroundaand b



Fitting data: is the model right?

Let’s do the question again (more precisse):

oIs the ¥ arising after minimization
*When assuming that the data are normally distributerd around the model (hypothesis)

Following a y?-distribution of (as it should?)

Rule of thumb (or the joys of the y2-distribution)

} The y? should follow a y-distribution with n-m degrees of freedom
arising for the data (with n points) and the model (with m=2 parameters)
S
For n data and 2 parameters p=n-m and therefore the calculated %> :

y*~(n-m)

For this reason it seems reasonable to define a reduced x? that should be about one

2

2 X
Ared = ~1 )
n—m ... for a good fit



Fitting data: is the modelling right?

Let’s do the question again (more precisse):

oIs the ¥ arising after minimization
*When assuming that the data are normally distributerd around the model (hypothesis)
Following a y?-distribution of (as it should?)

Probabil ity(or the joys of the y>-distribution)

The 2 should follow a y-distribution with n-m degrees of freedom
that we can calculate from the number of points and number of parameters.

e guestion is now: what is the probability (p)
to get the calculated value of y? or greater?

00 01 02 03 04

N T N S—

We calculated the PDF and get this number... for n big y ZN(O,\/2n) and we use



Hypothesis testing

We have two competing models
H,y: or null hypothesis
H,: or alternative hypothesis

What is the probability that H, is compatible with H,?

Example: is there a linear correlation?

Or better:

What is the probability that the obtained slope (H1)
equals some value b, in our case b=0 (HO))

le _bHO

Oy

T =

... it follows a t-student distribution
but for n big follows N(0,c,)

o0 01 02 03 04

-3¢ -2 -lo ] 1o 20 3o

... and you can calculate the P value



“Hypothesis testing”

We have two competing models
H,y: or null hypothesis
H,: or alternative hypothesis

What is the probability that H, is compatible with H,?

Example: is there a linear correlation?

Imagine you get y=a+bx, being a=3.0+0.1 and b=1.5%0.5

What is the probability that the obtained slope (H,)
equals some value b, in our case b=0 (H,))

T - by, — by, _1.5-0_
o, 0.5

Or as a “distance” H, is at 30 from H,

3

00 01 02 03 04

-3 -2 -lo i 1o 2o o

and this means that P(b>1.5)=0.001

if we establish a significance level of a=0.05 (is an accepted value) to reject the hypothesis...
Therefore THERE IS a linear correlation



“Hypothesis testing”

We have two competing models
H,y: or null hypothesis
H,: or alternative hypothesis

What is the probability that H, is compatible with H,?

Example: is there a linear correlation?

Imagine you get y=a+bx, being a=3.0+£0.1 and b=1.5%+1.5

What is the probability that the obtained slope (H,)
equals some value b, in our case b=0 (H,))

T - 0y, =By _1.5-0 _
o 1.5

Or as a “distance” H, is at o from H,

1
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and this means that P(b>1.5)=0.34

if we establish a significance level of 0=0.05 (is an accepted value) to reject the hypothesis...
Therefore THERE IS NOT a linear correlation (b,, might come from an error. is “inside the error”)



“Hypothesis testing”

We have two competing models
H,y: or null hypothesis
H,: or alternative hypothesis

What is the probability that H, is compatible with H,?

Example: is there a linear correlation?

Problems:
1.-We need nested models!!!

i.e. we need to set some parameters #0 to perform “model selection”
(a+bx, setting b=0, what if we want to compare y=ax+b with y=A3exp(bx)???)

2.- We are NOT doing “model selection”
only setting the probability that a given parameter is not zero....



“Hypothesis testing”

We have two competing models
H,y: or null hypothesis
H,: or alternative hypothesis

What is the probability that H, is compatible with H,?

Parameter free: let’s really compare the two models!!!

Let’s use the F-distribution

l’&n/
U= /(n_mHl)

)

We might now calculate the probability that we get the diference between models




“Hypothesis testing”

Even more cool: We perform a Kolmogorov-Smirnov test

1.- We calculate the cumulative distribution function CDF from the PDF
of the two models: H, (with n-m, dof), and H, (with n-m,; dof),

CDF(z*) = [ f(x")dy’

-

2.- We look at the maximum distance of the two of them
% 08F
3.- We look at the maximum distance of the two of them D ié e
2
4.- for n and m large, the quantity § 04r
§ 02F
4D2 dof,,dof,,, —4D> (n_mHo)'(n_mHl) o,

dofy,, +dof,,, (n_mH0)+(n_mH1)

follows a y? distribution with two degrees of freedom

and now we might calculate the P value...
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