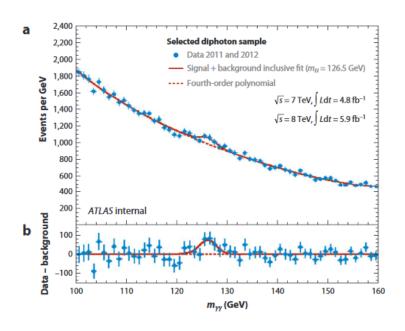
Data analysis

What is data analysis? (for us)



1.- Scientific method: modelling, quantify falsifiability of Hypothesis

Is there a peak?

2.- Learn from the parameters of the model

What is the mass?

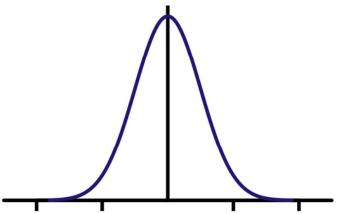
Data analysis

What is data analysis? (for us)

1.- Classical data analysis: STATISTICS

2.- Non-classical data analysis: PROBABILITY (Bayes theorem)

Probability distribution functions



Statistics: basic definitions

Population (N members): ALL members under study: *all students from UPC* **Sample (n members)**: a subset of the whole population: *the people sitting in this room*

Random variable: X coming from a random phenomenon it can take the values $x_i = x_1$, x_2 , x_3 ,...

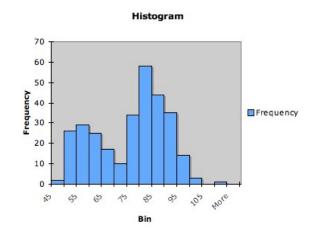
Probability distribution function (pdf):

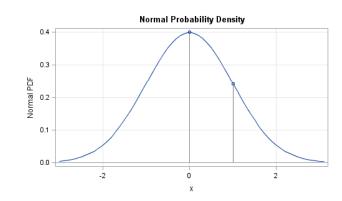
discrete case

$$P(X = x_i) = f(x_i)$$

continuous case

$$P(X = x) = f(x)$$



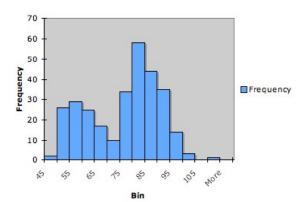


Statistics: definitions

Expectation value:

discrete case

$$P(X = x_i) = f(x_i)$$
Histogram



For random variable X

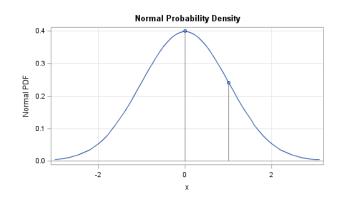
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

... and for any function of g(X) like X^2

$$E(X) = \sum_{i=1}^{n} g(x_i) \cdot P(X = x_i)$$

continuous case

$$P(X = x) = f(x)$$



$$E(X) = \int x \cdot f(x) dx$$

$$E(X) = \int g(x) \cdot f(x) dx$$

Statistics: definitions

"Location" of data

"Spread" of data

Average or mean

sample

Population

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Mean square deviation or sample variance

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

Average or mean

$$\overline{X} = E(X) = \frac{1}{n} \sum_{i=1}^{N} x_i$$

Variance

$$\sigma_x^2 = Var(X) = E\left[\left(X - \overline{X}\right)^2\right] =$$

$$= \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2$$

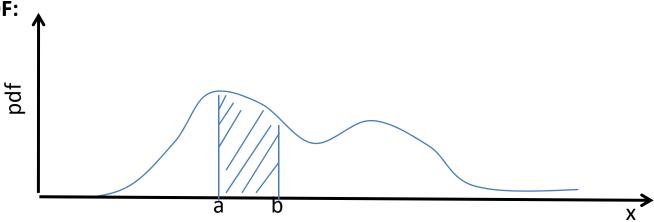
$$\sigma_x^2 = S^2$$
 for N large (typically N>30)

Standard deviation

$$\sigma_{x} = \sqrt{\sigma_{x}^{2}}$$

Some defintions about PDF's

Let's consider a PDF:



Relation with probabilities

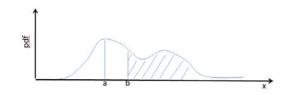
$$p(a < x < b) = \int_{a}^{b} f(x)dx$$

Therefore

$$\int_{-\infty}^{\infty} f(x) = 1$$

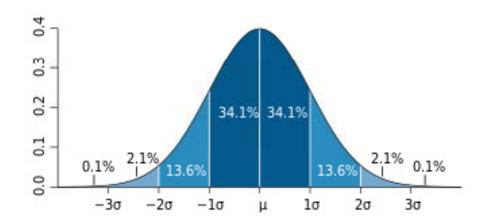
P-value for b (one side)

$$p(x > b) = \int_{b}^{\infty} f(x) dx$$



Some typical PDF's

Normal distribution



$$f(x) = \frac{1}{\sqrt{2\pi\sigma_x}} \exp\left(-\frac{(x-\mu)^2}{2\sigma_x^2}\right)$$
$$f(x) \equiv N(\mu, \sigma)$$

Relation with probabilities

$$p(-\sigma_x < x < \sigma_x) = \int_{-\sigma}^{\sigma} f(x) dx = 68.2\%$$

P-value for normal distribution for a value a: is related with the variance

$$p(-\sigma_x < x < \sigma_x) = \int_{0}^{\sigma} f(x) dx = 68.2\%$$

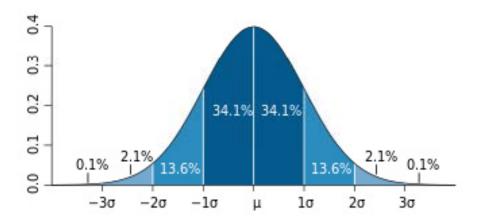
So we have a relationship between "error" and probability!

There is a 68,2% of chances that your real value is inside your "error "

(assuming that x has a normal distribution;-)

Standard Normal distribution

Standard Normal distribution (μ =0, σ =1)



$$f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}x^2\right)$$

Therefore, defining a "z-value" as

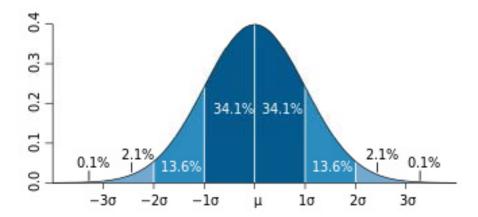
$$z = \frac{x - \mu}{\sigma_x}$$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma_x}} \exp\left(-\frac{1}{2} \left(\frac{x-\mu}{\sigma_x}\right)^2\right) \Rightarrow f(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z^2\right)$$

Z follows a standard normal distribution function...

a flavour of fitting

How to obtain the value of μ from data?

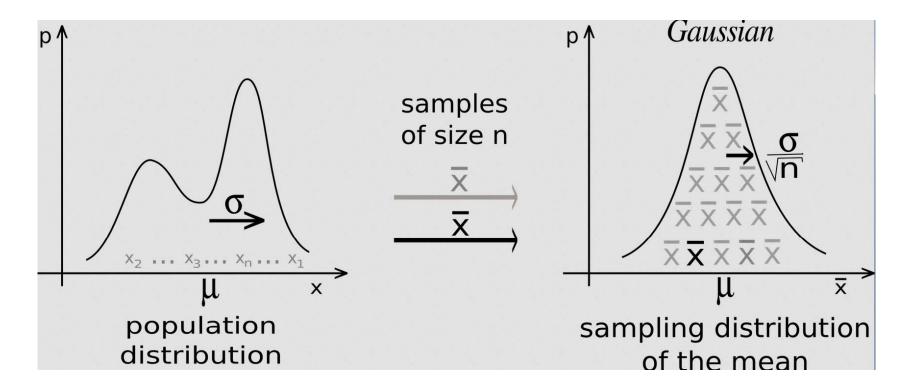


In orther to obtain the value of μ , when x is normal distributed, we have to minimize the quantity:

$$z^2 = \left(\frac{x - \mu}{\sigma_x}\right)^2$$

Least squartes fitting strategy

Central limit theorem

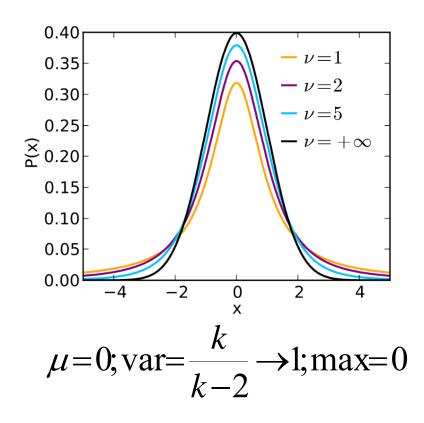


The distribution of the mean tends to be gaussian when increasing n no matters the pdf that originated the mean!!!!

This is the good and the bad thing from statistics is based on the normal PDF!!!!

t-Student distribution

Imagine we do not know σ , i.e. the error of the data... shall we panic? NO, take a Guiness!



$$f(t) \propto \left(1 + \frac{t^2}{k}\right)^{-\frac{k+1}{2}}$$

And it depends only on the degrees of freedom (number of points for the moment). And of course tends to the Normal distributin for k big N(0, Vk)

t-Student distribution

Usefull to compare two mean values (if they follow a Normal distribution!!!) Lets assume that the degrees of freedom of X and Y are m and n, then

$$S_{y} = \frac{\sum (y_{i} - Y)^{2}}{m} \qquad S_{x} = \frac{\sum (x_{i} - X)^{2}}{n} \qquad v = m + n - 2$$

$$S^{2} = \frac{nS_{x} + mS_{y}}{v}$$

$$t = \frac{\overline{X} - \overline{Y}}{s\sqrt{m^{-1} + n^{-1}}} \qquad O_{0.5}$$

$$f(t) \propto \left(1 + \frac{t^{2}}{s}\right)^{\frac{k+1}{2}}$$

And it depends only on the degrees of freedom (number of points for the moment)

generalized t-Student distribution

Usefull (agaion) to compare two mean values (if they follow a Normal distribution!!!)

but now imagine that a variable X that can be expressed as

$$X=\mu+\hat{\sigma}T$$
 where T follows a T-student distribution (might be positive or negative!!) where $\hat{\sigma}$ is a scale factor

$$T = \frac{X - \mu}{\hat{\sigma}}$$
 follows therefore a T-student distribution with n degrees of freedom

... it can be proved that $\hat{\sigma}^2 = \text{var}(x)$ for n large enough, and thus is sometimes assumed as "the error" in μ (-sic-)

and for large n will be the same as for the Normal distribution with $\sigma=Vn$

We can therefore compare X (with an "error") with a fixed value μ

Chi-Squared distribution

Do you remember the normal distribution:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma_x}} \exp\left(-\frac{1}{2} \left(\frac{x-\mu}{\sigma_x}\right)^2\right) \Rightarrow f(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z^2\right)$$

We minimize Z^2 in order to find μ ... the following question arises:

What is the PDF for Z² itself?

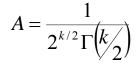
Chi-Squared distribution

If X_i follow a <u>standard</u> normal distribution then $\chi^2 = X_1^2 + X_2^2 + X_3^2 + ... + X_{\nu}^2$

$$\chi^2 = X_1^2 + X_2^2 + X_3^2 + \dots + X_k^2$$

follow a so called χ^2 distribution with n degrees of freedom defined as:

$$f(x) = A \cdot x^{k/2 - 1} e^{-x/2}$$



$$\mu = k$$
; var = $2k$; max = $k - 2$

If
$$k \rightarrow \infty$$
 then $\frac{\chi^2 - k}{\sqrt{2k}}$ f

If $k \rightarrow \infty$ then $\frac{\chi^2 - k}{\sqrt{2k}}$ follows a standard normal distribution , i.e. χ^2 follows N(k,V2k)

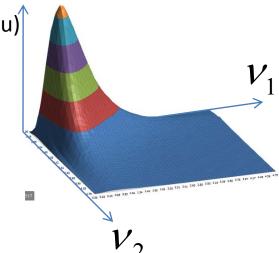
F distribution

Usefull to compare two variances (again if they come from a Normal distribution!!!)

Lets assume that Z_1^2 and Z_2^2 follow a chi-square distribution... then:

$$u = \frac{Z_1^2}{Z_2^2}$$
 follows an F distribution defined as

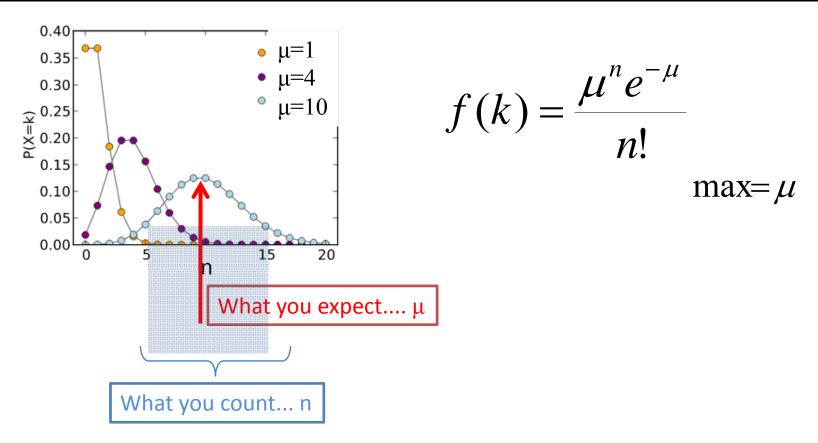
$$f(u) = A \cdot u^{\frac{v_1}{2} - 1} (v_2 + v_1 u)^{-\frac{(v_1 + v_2)}{2}}$$



Poisson- distribution

Let's imagine we perform a counting experiment, we might ask:

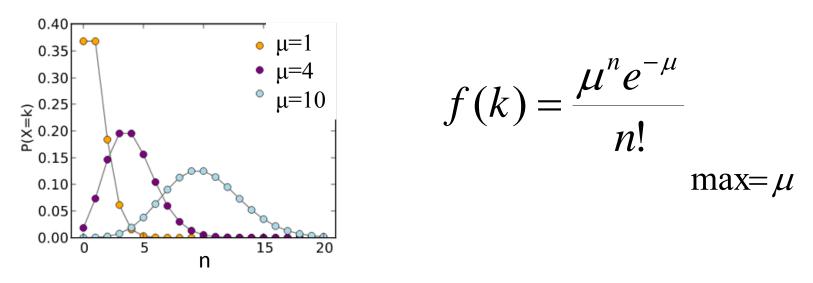
What is the probability that n neutrons hit the detector in one hour?



Poisson- distribution

Let's imagine we perform a counting experiment, we might ask:

What is the probability that n neutrons hit the detector in one hour?



Which is not a Gaussian distribution... but as always, if k is large enough

$$f(k) = \frac{\mu^n e^{-\mu}}{n!} \longrightarrow N(\mu, \sqrt{k})$$

The dumb rule $\sigma=Vn$ comes from the poisson distribution!!

Summarizing

Normal (Z): Central limit theorem

 $N(\mu,\sigma)$ Usefull to compare two values A and B when error σ =variance is known

 χ^2 -distribution: Distribution for Z^2 or for a sumation of v (degrees of freedom)

 $N(\nu_{1}\sqrt{2\nu})$ Usefull to perform fitting

t-distribution: "central limit theorem" for small n

Usefull to compare two values A and B when error σ =variance is unknown

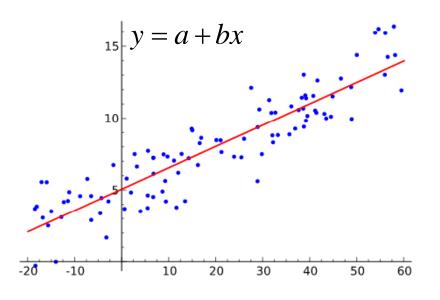
F-distribution: Usefull to compare variables that follow a χ^2 distribution

Usefull to compare the "errors" of $A\pm\sigma_A$ and $~B\pm\sigma_B$

Poisson-dist: PDF for a counting experiment (assuming n counts)

 $N(\mu,\sqrt{n})$

Fitting data: least squares



Remember the goals:

- 1.- Parameter estimation
- 2.- Modelling (Hypothesis testing)

Goal: to minimize the "total distance" of n exp. points $d_1+d_2+...d_n$ to the model or more seriously.... to minimize the following variabel that follows a χ^2 -distribution and therefore D **is normally distributed** around H

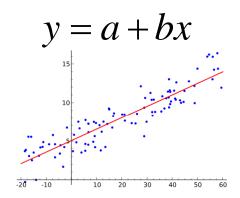
$$\chi^{2} = \sum_{i=1}^{n} \frac{(D_{i} - H_{i})^{2}}{H_{i}}$$

Where D_i are the data pints, and H_i are the model expected values (Hypothesis)

... since for n large a χ^2 -distribution for point i tends to a gaussian with σ^2 =n=H_i

$$\chi^{2} = \sum_{i=1}^{n} \frac{(D_{i} - H_{i})^{2}}{H_{i}} \rightarrow \sum_{i=1}^{n} \frac{(D_{i} - H_{i})^{2}}{\sigma_{i}^{2}}$$

Fitting data: parameter estimation



After minimization of χ^2 and defining

$$\Delta = n \sum x^2 - \left(\sum x\right)^2$$

	a	b
<u>VALUE</u> and therefore μ	$a = \frac{\sum x^2 \sum y - \sum x \sum xy}{\Delta}$	$b = \frac{n\sum xy - \sum x\sum y}{\Delta}$
ERROR and therefore σ	$\sigma_b = \sigma_y \sqrt{rac{n}{\Delta}}$	$\sigma_b = \sigma_y \sqrt{\frac{\sum x^2}{\Delta}}$

Fitting data: is the model right?

<u>Let's do the question again (more precisse):</u>

- •Is the χ^2 arising after minimization
- •When assuming that the data are normally distributerd around the model (hypothesis)
- •Following a χ^2 -distribution of (as it should?)

Rule of thumb (or the joys of the χ^2 -distribution)

The χ^2 should follow a χ^2 -distribution with n-m degrees of freedom arising for the data (with n points) and the model (with m=2 parameters)

For n data and 2 parameters μ =n-m and therefore the calculated χ^2 :

$$\chi^2 \approx (\mathbf{n} - \mathbf{m})$$

For this reason it seems reasonable to define a reduced χ^2 that should be about one

$$\chi^2_{red} = \frac{\chi^2}{n-m} \approx 1$$
 ... for a good fit

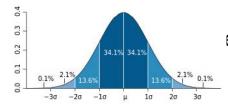
Fitting data: is the modelling right?

Let's do the question again (more precisse):

- •Is the χ^2 arising after minimization
- •When assuming that the data are normally distributerd around the model (hypothesis)
- •Following a χ^2 -distribution of (as it should?)

Probability (or the joys of the χ^2 -distribution)

The χ^2 should follow a χ^2 -distribution with n-m degrees of freedom that we can calculate from the number of points and number of parameters.



e question is now: what is the probability (p) to get the calculated value of χ^2 or greater?

We calculated the PDF and get this number... for n big $\chi^2 \approx N(0, \sqrt{2}n)$ and we use

We have two competing models

H₀: or null hypothesis

H₁: or alternative hypothesis

What is the probability that H_1 is compatible with H_0 ?

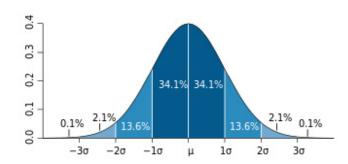
Example: is there a linear correlation?

Or better:

What is the probability that the obtained slope (H1) equals some value b, in our case b=0 (H0))

$$T = \frac{b_{H1} - b_{H0}}{\sigma_b}$$

... it follows a t-student distribution but for n big follows $N(0,\sigma_b)$



... and you can calculate the P value

We have two competing models

H₀: or null hypothesis

H₁: or alternative hypothesis

What is the probability that H_1 is compatible with H_0 ?

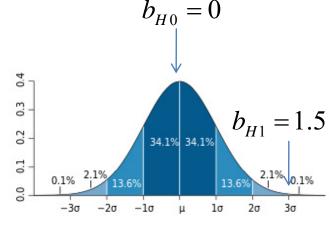
Example: is there a linear correlation?

Imagine you get y=a+bx, being a=3.0±0.1 and b=1.5±0.5

What is the probability that the obtained slope (H_1) equals some value b, in our case b=0 (H_0))

$$T = \frac{b_{H1} - b_{H0}}{\sigma_b} = \frac{1.5 - 0}{0.5} = 3$$

Or as a "distance" H_1 is at 3σ from H_0 and this means that $P(b \ge 1.5) = 0.001$



if we establish a significance level of α =0.05 (is an accepted value) to reject the hypothesis... Therefore THERE IS a linear correlation

We have two competing models

H₀: or null hypothesis

H₁: or alternative hypothesis

What is the probability that H_1 is compatible with H_0 ?

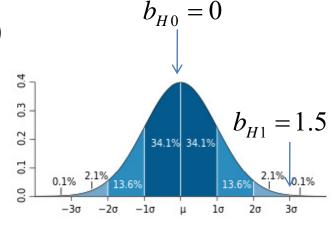
Example: is there a linear correlation?

Imagine you get y=a+bx, being a=3.0±0.1 and b=1.5±1.5

What is the probability that the obtained slope (H_1) equals some value b, in our case b=0 (H_0))

$$T = \frac{b_{H1} - b_{H0}}{\sigma_b} = \frac{1.5 - 0}{1.5} = 1$$

Or as a "distance" H_1 is at σ from H_0 and this means that $P(b \ge 1.5) = 0.34$



if we establish a significance level of α =0.05 (is an accepted value) to reject the hypothesis... Therefore THERE IS NOT a linear correlation (b_{H0} might come from an error. is "inside the error")

We have two competing models

H₀: or null hypothesis

H₁: or alternative hypothesis

What is the probability that H_1 is compatible with H_0 ?

Example: is there a linear correlation?

Problems:

1.-We need nested models!!!

i.e. we need to set some parameters $\neq 0$ to perform "model selection" (a+bx, setting b=0, what if we want to compare y=ax+b with y=A3exp(bx)???)

2.- We are NOT doing "model selection" only setting the probability that a given parameter is not zero....

We have two competing models

H₀: or null hypothesis

H₁: or alternative hypothesis

What is the probability that H_1 is compatible with H_0 ?

Parameter free: let's really compare the two models!!!

Let's use the F-distribution

$$u = \frac{\chi_{H1}^{2} / (n - m_{H1})}{\chi_{H1}^{2} / (n - m_{H0})}$$

We might now calculate the probability that we get the diference between models

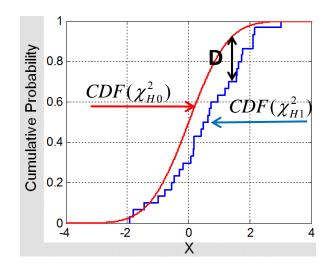
Even more cool: We perform a **Kolmogorov-Smirnov** test

1.- We calculate the cumulative distribution function CDF from the PDF of the two models: H_0 (with $n-m_{H0}$ dof), and H_1 (with $n-m_{H1}$ dof),

$$CDF(\chi^2) = \int_0^{\chi^2} f(\chi^2) d\chi^2$$

- 2.- We look at the maximum distance of the two of them
- 3.- We look at the maximum distance of the two of them D
- 4.- for n and m large, the quantity

$$4D^{2} \frac{dof_{H0} \cdot dof_{H1}}{dof_{H0} + dof_{H1}} = 4D^{2} \frac{(n - m_{H0})(n - m_{H1})}{(n - m_{H0}) + (n - m_{H1})}$$



follows a χ^2 distribution with two degrees of freedom

and now we might calculate the P value...

