
CORRELATION FUNCTIONS



Coherent and incoherent scattering

We define a new function:

( , )I Q t
intermediate function
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the scattering cross section is the fourier transform of I(Q,t) plus a prefactor
let’s thus define the fourier transformation of I(Q,t) as S(Q,w): 0
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Coherent and incoherent scattering

We define a new function:
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( , )S Q 
scattering law

which is directly related to the scattering cross section, 
and its relation with the intermediate scattering function is:



Coherent and incoherent scattering

We define a new function:

( , )G r t
time-dependent
pair correlation function

And finally, we would like to have a function in real space (r and t), so that
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Coherent and incoherent scattering
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scattering law intermediate 
function 
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time-dependent (pair) 
correlation function
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The mid point of the talk

Let’s add some physics. But before:
The goal is to find an interpretation for the scattering functions

I(Q,t), S(Q,w) and G(r,t)
so that we can link those functions with the physics of the system

To do that let’s first define the self part of each function!
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and remember the definition of I(Q,t)
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Coherent and incoherent scattering
COHERENT 

(warning!!! it does include the self part!!!!!)
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Coherent and incoherent scattering

),( QS


scattering law intermediate 
function 

),( tQI


no-name function
(for the moment)
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Using it can be proved that : 
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Let’s add the physics

having into account that and thus( ) ( ) ( )f x x a dx f a   ( ) ( ) ( )x x a dx a   
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and assuming that all particles are identical...
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Time-dependent pair correlation function:

 
 

     0 03
1, 0
2

sG r t r R t R


  
  

Time-dependent pair correlation function (self):
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LIMITS OF THE CORRELATION FUNCTIONS



Limits for the scattering functions (self and coh):

( , )I Q t

( , )S Q 

( , )G r t

t=0 t t=∞



Classical approximation
We have:

That can be devided in two parts: self and distinct
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where g(r) is the static pair distribution function:
average particle density from 0 to all i neighbours

Let’s write these contributions for t=0
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only the coherent part is interesting!!!!
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Coherent scattering: structure

),(),( trGtRG 


… let’s assume isotropy 
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g(r): the static pair distribution function:
average particle density from 0 to all i neighbours



Limits for the scattering functions (self and coh):

( , )I Q t

( , )S Q 

( , )G r t

t=0 t t=∞



Coherent scattering: structure
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Only the elastic part participates in s(Q,w), therefore:
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This is the static approximation! 
and since is elastic there i no energy change in the neutron: |k|=|k’|

Static approximation ( , ) ( ,0)I Q t I Q
 

usefull to perform diffraction



Coherent scattering: structure

Energy exchangenon statick’≠k

no energy exchangestatick’=k

the time the neutron takes to cross the sample must be smaller
than the vibrations characteristic time

... this is not true for light atoms as Hydrogen... but can be corrected!



Limits for the scattering functions (inc and coh):

( , )I Q t

( , )S Q 

( , )G r t

t=0 t t=∞



Classical approximation
We have:

That can be devided in two (again) self and distinct:

    0( , ) ( 0i
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( , ) ( , ) ( )sG r G r g r   
  

where g(r) is the static pair distribution function again

Let’s write these contributions for t=∞
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depends on how far away
from initial position the particle goes

different from liquids and solids
assuming ergodicity...



Classical approximation
Let’s “attack” the self part:

    0 0( , ) ( 0sG r r R R    
  

Solid: particles do not go far away... and assuming isotropy
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Where <u2> is the mean square displacement

... and therefore is related to the debye waller factor (DWF)
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Classical approximation
Let’s “attack” the self part:

    0 0( , ) ( 0sG r r R R    
  

liquid: particles are everywhere with respect to intial time

( , )sG r  

... and therefore is quite boring... for t=∞!



Classical approximation
Let’s compare the cases t=0 and t=∞
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a “delta” or a smooth function the pair correlation function

( )g r

both are related to the distribution of distances between molecules (again)



Limits for the scattering functions (inc and coh):

( , )I Q t

( , )S Q 

( , )G r t

t=0 t t=∞

again, from another point of view!



Classical approximation

(this is much used in crystallography!!!!!)
Let’s write (again) these contributions for t=∞
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We assume particles are not correlated between t=0 and t=∞, therefore...
we can decouple de deltas at t=0 and t=∞
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What is the physical meaning of each delta???

And since they are decopled we can drop “the time”
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Classical approximation

Physical meaning of the “deltas” appearing in g(r,∞):

 ( ') ' jr r R  
 

it simply tells me where the molecules are
(is a 3D Probability Density Function about molecular positions



Classical approximation

Physical meaning of the “deltas” appearing in g(r,∞):

 ( ') ' jr r R  
 

it “simply” tells me where the molecules are, when the maps is displaced

 ( ') ' jr r r r R    
   

r



Classical approximation

Physical meaning of the “deltas” appearing in g(r,∞):

   ( ') ( ') ' 'j jr r r r R r r R       
      

is the autocorrelation function!!!!

r

... and is maximum at the distances where there are correlations



Classical approximation

Physical meaning of the “deltas” appearing in g(r,∞):

   ( ') ( ') ' 'j jr r r r R r r R       
      

is the autocorrelation function!!!!

r

... and is maximum at the distances where there are correlations



Classical approximation

Physical of g(r,∞) a new approach:

is the so called patterson function

... and it is the same as the pair-distribution function... again
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Limits for the scattering functions (self and coh):
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( , )S Q 

( , )G r t

t=0 t t=∞



Classical approximation

Let’s have look at I(Q,t)
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Two ways of interpretation
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(more used
to study liquids)

(more used
to study crystals)

We are interested about what happens at t=∞



Liquid

In a liquid is better to think as:

( , ) ( )G r g r  
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In a solid is better to think as:
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So it is the fourier transformation of the molecular position!!!

Solid



Limits for the scattering functions (self and coh):
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t=0 t t=∞

(relation with t=∞)



Coherent and incoherent scattering

COHERENT 
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We finally arrive to the function we can measure!!!!



Classical approximation
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Let’s have look at I(Q,t), again

     0 0 0, ' , ,I Q Q t I Q Q t I Q Q     
     

 0' ,I Q Q t
 

 0 ,I Q Q 
 

t

 1 1 1 1'( , ) ( ) '( , ) ( )
2 2 2 2

i t i t i tI Q t e dt I Q e dt I Q t e dt I Q    
   

  
  

  

        
 

   

Elastic scatteringInelastic scattering
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is related to elastic scattering!!!!
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Classical approximation
Therefore the relation between I(q,∞) and the cross section is:

And the same holds for the incoherent part
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(since it is elastic k0=k)

And integrating for all energies
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Classical approximation

For the incoherent part

For the coherent part:
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SUMMARIZING what we measure at  t=∞ (elastic scattering, therefore!)



Classical approximation

How does this look like for solids:

for a crystalline solid (monocrystal) for a crystalline solid (powder)



Classical approximation

How does this look like for liquids:

incoherent

coherent

... But, HOW DO WE EXTRACT INFORMATION FROM THIS POTATOE????



Classical approximation

Molecular Dynamics
Force Field

Newton’s laws



Classical approximation
How does this look like for liquids:



Classical approximation
How does this look like for liquids:

Cocaine



Classical approximation
How does this look like for liquids:

Cocaine



Classical approximation
How does this look like for liquids:

Cocaine



Limits for the scattering functions (self and coh):

( , )I Q t

( , )S Q 

( , )G r t

t=0 t t=∞

(relation with t=∞)

gas



Ideal gas

All particle are indistinguishable
The scattering of all particles is the same as that of one, but many repeated many times

Ideal Gas

That means that correlation function for one and for many is the same, and therefore:

   , ,sG r t G r t



Only simple cases can be studied

 2( ) 4 ,P r r G r t

Let’s study an ideal gas. There is a radial simmetry...
the probability of finding an atom between r and r+dr is:

we can relate the r PDF to the velocity PDF of the particle: 

( ) ( )P r dr P v dv
and we know v from the maxwell distribution
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we apply now the change of variable

Ideal gas



Only simple cases can be studied
Remember taht r=vꞏt, then for a fixed time
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G(r,∞)

G(r,0)

G(r,t1)

G(r,t2)

G(r,t) r

... a gaussian that spreads with time!!!

Ideal gas



Limits for the scattering functions (self and coh):
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t=0 t t=∞

(relation with t=∞)

gas

gas

gas



Classical approximation

Only simple cases can be studied
Remember taht r=vꞏt, then for a fixed time
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Classical approximation

Only simple cases can be studied
Remember taht r=vꞏt, then for a fixed time
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... a gaussian that spreads when increasing t

... a gaussian that shrinks when increasing t

... a gaussian that shrinks when increasing energy
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Limits for the scattering functions (self and coh):
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(relation with t=∞)
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Diffussion
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Diffussion: the particle tries to go to the place where the density is lower

from this equation we get again a gaussian of the particle position 
from her original position

Being D the “diffussion coefficient”, or we could also read it as
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2 ( ) 2D t Dt being

can be compared with ideal gas

the “spreading is faster for an ideal gas (as expected)



Diffussion
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Diffussion: the particle tries to go to the place where teh density is lower

What is the diffussion coefficient??

Therefore D is related to the squared distance that a particle has advanced!!!



Limits for the scattering functions (self and coh):
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(relation with t=∞)
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Classical approximation

We get the rest of correlation functions
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Surprise surprise:
a Lorentzian!!!!

2DQ 
that spreads with energy



G(r,∞)

Incoherent scatteringDiffusion
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D: diffusion coefficient

Gs(r,t) r
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Si(q,ω) ω!!
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that’s what we measure!!



Gaussian approximation:

    
2

3 2
2 2

1( , ) exp
22

s
rG r t
tt 

 
   

 

Since for long and short times there is a gaussian we say that for all times:
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and the mean square displacement:
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We have a link between movement and the scattering function!!!



Incoherent scattering… beyond diffussion



A real case: glycerol



A real case: glycerol

fitting for all Q

Phys. Chem. Chem. Phys. 19, 12665, 2017



A real case: phospholipid membrane


