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Coherent and incoherent scattering

We define a new function: intermediate function

I(Q,f)
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the scattering cross section is the fourier transform of I(Q,t) plus a prefactor k1

let’s thus define the fourier transformation of I(Q,t) as S(Q,w): ky 27

S(0,w) = 21% j 1(O,t)-e ' dt



m Coherent and incoherent scattering

We define a new function: scatte ring law
5(0,w)

520 _Nk <bl.b].>S(Q,a))

00wk, S

which is directly related to the scattering cross section,
and its relation with the intermediate scattering function is:

S(0, w) :2—71zh j 1(0,t)-e™dt



Coherent and incoherent scattering

And finally, we would like to have a function in real space (r and t), so that

1[(O,1) = T G(#,1)-e°"dO

We define a new function: time-dependent
pair correlation function

G(7,1)



- B Coherent and incoherent scattering

scattering law intermediate
function

S (Q, a)) S(Q,a))zi]i[(é,t).e‘i‘“dt Vi (Q, l‘)

1(Q,1) = [ G(R,1)-¢”"dR

(R, ) G(R,t)

time-dependent (pair)

asereje function . :
correlation function
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The mid point of the talk

Let’s add some physics. But before:

The goal is to find an interpretation for the scattering functions
1(Q,b), S(Q,w) and G(rt)
So that we can link those functions with the physics of the system

To do that let’s first define the self part of each function!

~
1 7 .
- . S(Q,0)=——| 1(0,1)-¢""dt
7 = 1 Z < HOR (1) iR, (0) > 27h I
S
N 5 |-
G,(F.t)=—= [ 1,(Q.1)-e " dt
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and remember the definition of I(Q,t)
-

S0, w)zzlﬁ j 1(0,1)-e™dt
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e Coherent and incoherent scattering

COHERENT
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Coherent and incoherent scattering

G(R,1)

no-name function
(for the moment)



Let’s add the physics

Using 5(7):(2;)3161%@ it can be proved that :
1 1 ~ _
G(7,t) = <5 PR O\ S{Fw7—R (¢ >d*'
(V ) (272_)3 N,Z]:j {I" ( )} {I" r J( )} r

having into account that If(x)5(x —a)dx = f(a) and thusj5(x)5(x —a)dx =o(a)

6(7.0)= e 3 (s (7- (R ()R 0)))

(272') i,

and assuming that all particles are identical...

G(F,t)z( : 3Z<5{7—(Ej(t)—ﬁo(0))}>




Time-dependent pair correlation function:

oo Sk 0 R

27) 0°c
Rj(t) aQaa) coherent

R (0) o/ﬁio—ﬁi«» G(R, 1)

Time-dependent pair correlation function (self):

G.(7.1) = ——{8{7 ~(R,(1)- &, (0))})

(27)

- 0°c

Ri(t) = aQaa) incoherent
: / G (Rat)
RZ(O) Ri(t)_Ri(O) S
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LIMITS OF THE CORRELATION FUNCTIONS



Limits for the scattering functions (self and coh):

t=0 t f=c0

1(Q,1)

5(0, w)




ol Classical approximation
wonave:  G(F,1)= Y (8(F (R, (1)~ R, (0)))

Let’s write these contributions for t=0

That can be devided in two parts: self and distinct

G(7.0)=((F (R, (0)= &, (0)))+ {5 ~(R (1)~ &, (0)))

\ ) \ J

GS (f: . 0) = (F ) only the coherent part is interesting!!!!
// R, (1)

G(7,0)=6(F)+g(F) | & O/R;)—Eim)

where g(r) is the static pair distribution function:
averaqe particle density from 0 to all i neighbours




B Pt Coherent scattering: structure

g(r): the static pair distribution function:
averaqe pairticle density from 0 to all i neighbours

... let’s assume isotropy G(E,t) = G(r,t)

G(r,t=0)=0(r)+g(r)

o
R (0)

7 \©

o

G(r0) |

ANV
J\/\/ r




Limits for the scattering functions (self and coh):

t [=c0

G(7,1)

1(Q,1)

5(0, w)




@) umoumener Coherent scattering: structure

Static approximation [ (Q, H~1 (Q, 0)

usefull to perform diffraction

1(0,0) = j G(R,0)-¢"dR = j (6(R)+g(R))-e"dR
and therefore

S(0, ®) = ﬁ [ 1(0.0)-e™dt = 2—71[;_11@, 0) [ e dt = ﬁ[(g, 0)5 ()

Only the elastic part participates in s(Q,w), therefore:

oc) o, ~
— | =—NI(0Q,0
(8Qj 4r (©.0)

coh

This is the static approximation!
and since is elastic there i no energy change in the neutron: |k|=|K’|



- Coherent scattering: structure

Energy exchange =»non static ?k’#k

\

Cross-
section

- 0
N ' no energy exchange =»static ?k’=k

the time the neutron takes to cross the sample must be smaller
than the vibrations characteristic time

... this is not true for light atoms as Hydrogen... but can be corrected!



Limits for the scattering functions (inc and coh):

t=0 t f=c0

G(7,1)

1(Q,1)

5(0, w)




" Classical approximation

G(F,t) = Z<5(F —(R- ()= R, (O))>

Let’s write these contributions for t=«

That can be devided in two (again) self and distinct:
G(F,0) = (5~ (R, (0) = R, (0)))+ D (8¢ ~(R, () - &, (0)))
i#0

\ ) \ J

depends on how far away /v

from initial position the particle goes ~ @SSuming ergodicity...
different from liquids and solids

N\
G(r,0) =G (r,0)+g(r)

where g(r) is the static pair distribution function again



" Classical approximation

Let’s “attack” the self part:

G,(F,0) = (8(F ~ (R, () - &, (0)))
Solid: particles do not go far away... and assuming isotropy

(Il g ¥

7y >

Where <u?> is the mean square displacement

.. and therefore is related to the debye waller factor (DWF)

exp| — o §u2> =1,(0,0)= jGS (r,oo)exp(ié?)d?




" Classical approximation

Let’s “attack” the self part:

G, (F,0) = <5(F _(Eo ()= R, (O))>

liquid: particles are everywhere with respect to intial time

Gs(rﬂoO):IO

... and therefore is quite boring... for t=«~!



" Classical approximation

Let’s compare the cases t=0 and t=«
G(r,0)=0(r)+g(r)

G(r,0) =G (r,0)+g(r)

_ \

A A
4 ;) 4 A
G (r,0) = G (r,0) oc - 7
S(l’ ©) = p L (7r,00) exp( 2<”2>J g(l")
a “delta” or a smooth function the pair correlation function
N J

~

both are related to the distribution of distances between molecules (again)



Limits for the scattering functions (inc and coh):

t=0 t f=c0

G(7,1)

again, from another point of view!

1(Q,1)

5(0, w)




= A Classical approximation
Let’s write (again) these contributions for t=

(this is much used in crystallography!!!!!)

We assume patrticles are not correlated between t=0 and t=«, therefore...
we can decouple de deltas at t=0 and t=

G (F,o0) = — 1Zj<5{?'—ﬁi(O)}><5{F'+F—ﬁj(oo)}>dz7"

(27[)3 N 7

And since they are decopled we can drop “the time”

G(F,0)=— 1Zj<5{f'—1§.}><5{7'+f—ﬁj}>df'

(27[)3 N

What is the physical meaning of each delta???




" M Classical approximation

Physical meaning of the “deltas” appearing in g(r,~):
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it simply tells me where the molecules are
(is a 3D Probability Density Function about molecular positions



" M Classical approximation

Physical meaning of the “deltas” appearing in g(r,~):

ﬁ
O o
VAR |
O G ] 4
Q
o O 9
0 ) o ° 0 3
0'"(} %'@') 5
g O a

S
o2 | S0
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it “simply” tells me where the molecules are, when the maps is displaced



" Classical approximation

Physical meaning of the “deltas” appearing in g(r,~):
=1 e - N _ e '_ D | = _ D
o(r )p(r+r)—<5{r Rj}><5{r + 7 RJ.}>

is the autocorrelation function!!!!

.. and is maximum at the distances where there are correlations



" Classical approximation

Physical meaning of the “deltas” appearing in g(r,~):
=1 e - N _ e '_ D | = _ D
o(r )p(r+r)—<5{r Rj}><5{r + 7 RJ.}>

is the autocorrelation function!!!!

.. and is maximum at the distances where there are correlations



" Classical approximation

Physical of g(r,~) a new approach:

G(f,oo)zijp(?')p(ﬂ?')df'

N
is the so called patterson function
) p(F) 0 G(F,)
The structure The resulting Patterson
_p. .
Its inverse

... and it is the same as the pair-distribution function... again



Limits for the scattering functions (self and coh):

t=0 t f=c0

G(7,1)

1(Q,1)

5(0, w)




" Classical approximation

Let’s have look at I(Q,t)

We are interested about what happens at t==

/‘

- _ - . (more used
G(” ’ OO) — Gs (7’, OO) + g(?’) to study liquids)
Two ways of interpretation<

. 1 n e .., (moreused
G(7,0)= ﬁjp(’” )p(F+7)dr' o study crystals)
—




In a liquid is better to think as:

" i

G(r,0)=p+g(r)

Therefore:

[(Q,0)=1(0)= j(p+g(r))exp(ié?)d? ‘

I(Q,oo) = I(Q) = J(p +g(r))exp(iQrcos ) r’drd cos Od
I(Q,oo) = ](Q) = j(p+ g(r))exp(iQrcos @) rdrd cos Od g

I(Q) No(Q) +—jg(r) sm(Qr)m’r



" S Solid

In a solid is better to think as:

G(F,oo):%jp(f;')p(?+?')dl7'

Therefore:

I(Q,oo)zl(Q):j jp(?')p(ﬂf')df'exp(@f)dfd?'

Up exp )dr

So it is the fourier transformation of the molecular position!!!



Limits for the scattering functions (self and coh):

t [=c0

G(7,1)

1(Q,1)

5(0, w)

(relation with t=)



= a2 A Coherent and incoherent scattering

We finally arrive to the function we can measure!!l!

COHERENT INCOHERENT
o0’c k o, o’c ko
—< NS ) Gine NS @
(8(28(01 , k 47 (Q ) [8(280)1 k (Q )
N\‘\” :E \,
\L & 4 |

0o 0o N 0o
0Q 0w 0Q 0w 0Q 0w

coherent incoherent




" Classical approximation

Let’s have look at I(Q,t), again
I(Q:th) =['(Q:Q0,t)+I(Q:QO,OO)

(Q.t)
S(q,w)

S(0,m) = 2%}2 j 1(0,t)-e™dt = 2%71 j [1'(0,0)+1(Q,%)]-e"dt

1 % . 1 %~ 1 % . 1 -
=—— | IO, t)-edt+—— | I(Q)-e™“dt=—— | ['(O,t)-e"dt +—5(w)]
h[o(Q)e m_fw@e m_jw (0.0)-¢"di+——5(0)1(0)
\ ) \ )
Y Y
Inelastic scattering Elastic scattering

1 (Q,OO) =1 (Q) Is related to elastic scattering!!!!




" Classical approximation

Therefore the relation between I(q,~) and the cross section is:

520 k O, = _& -~
(agawjd’wh =k—04—ﬂ;_lNS(Q,a)) = 47;_1 N§(a))](Q,oo)

(since it is elastic k,=k)

And integrating for all energies

oo o, =
), (e

And the same holds for the incoherent part

oo O A
), (o)



Classical approximation

SUMMARIZING what we measure at (=« (elastic scattering, therefore!)

For the coherent part: A
(a_aj — O con N](Q,oo) = O con NU,O eXp( Q )dF 2 solids
89 el,coh 472-
oo O ~ o 2\ _
- — LN] ,00 | = LhN + 7))ex 10r dr IIqUIdS
(5911,@ J2NE(O,00) == N [ (p+ (1)) exp(i0F
N J
4 N
For the incoherent part
aO' O. g O. 1 2 2 .
bl =—c NJ (Q,0)=—"<Nexp| —— U solids
(55, 5w ()= e 30
oo —~ _
- _ Gine. NI — _inc \J liquids
( 0Q) L’mc 4 (Q ) 4 P

/




" Classical approximation

How does this look like for solids:

for a crystalline solid (monocrystal) for a crystalline solid (powder)
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" N Classical approximation

How does this look like for liquids:

1 do
N dQ
/\ —
N 1
~ coherent
b S(q) b b2
b S(0) ) | -
) | |5 1 } incoherent
ﬂ 12 ]T..lfl' imleraksmic q ]

-1 = =2
Figure 2. Differential scattering cross-section per atom (1 /N jde/d2 = b S(q}HfJJ —h yfora
monatomic liquid or glass. The position of the first peak is inversely proportional to the interatomic
distance, rineraomic-

... But, HOW DO WE EXTRACT INFORMATION FROM THIS POTATOE????




" BN Classical approximation

Molecular Dynamics
e p

Force Field
Bonded Non-bonded
I
. 1 ¥ il A B qq
B = E K(-r) +m2|&__.1<£,(9— aeqf +E = [1+ cos(ng —y)] + z‘, [R— - R— + T
T
o'uo 069 . o f o l-"/ ¢ IRU
odh,. P o

4 Newton’s laws

force mass

\ / acceleration
(/
F

= ma

\ force acceleration /




" M
How does this look like for liquids:

FlQ)

K-ray +2.4

OLD ! - '*. :._4" v

Classical approximation



"
How does this look like for liquids:

Classical approximation

Cocaine




"
How does this look like for liquids:

2.5

0.5¢

353
W B SRR
B e T 2k L'

h.25d0 75c0caing/Hy 2505 750 +2.0

b 75tln ascocaineHy ws0p 550 +0.4

25

Classical approximation

Cocaine




"
How does this look like for liquids:

Classical approximation

Cocaine

b 75tln ascocaineHy ws0p 550 +0.4

25




Limits for the scattering functions (self and coh):

t [=c0

G(7,1)

1(Q,1)

5(0, w)

(relation with t=)



" S Ideal gas

Ideal Gas

® o 2 ?
@ o
@ o 9 -
? 2 O ?
2 2 O 2 o

All particle are indistinguishable
The scattering of all particles is the same as that of one, but many repeated many times

That means that correlation function for one and for many is the same, and therefore:

G(r,t) :Gs(r,t)



" deal gas

Only simple cases can be studied

Let’s study an ideal gas. There is a radial simmetry...
the probability of finding an atom between r and r+dr is:

P(r)= 47zr2G(r,t)
we can relate the r PDF to the velocity PDF of the particle:
P(r)dr = P(v)dv
and we know v from the maxwell distribution

1 Myv? 1
P(v)=h'exp| —— =’ exp| —— BMV’
(v) v Xp( 5 T] A Xp( 2,8 vj

we apply now the change of variable

47zr2G(r,t)dr = hy’ exp(—%,b’Mvzjdv



Only simple cases can be studied
Remember taht r=v-t, then for a fixed time

471G (1) dr = h (1) exp(—% ﬂM(rt)zjd(rt)

G(r,t)= hexp(— 20’;@)]

being £
o’ (t)=——
Mp
1

h= 3
(270° (z))é

... a gaussian that spreads with time!!!

Ideal gas

G(rt) r

|

/T\ G(r,0)

<

/

‘\ G(rt,)

A

Va

\G(’?tz)

G(r,»)




Limits for the scattering functions (self and coh):

f=o0
gas
G(7,1)
gas
1(Q,1)
gas
S(Q, o)

(relation with t=)



" Classical approximation

Only simple cases can be studied
Remember taht r=v-t, then for a fixed time

7"2
G(r,t)=hexp| —
o
1Q.0)= [ G(r.1)-¢?"dQ

I(Qaf):e’g(_—‘g 02 (t)j

S(0,w) = 21% j 1(0,1)-e " dt

s ﬁwk wof B

4xh’ 0’



" Classical approximation

Only simple cases can be studied
Remember taht r=v-t, then for a fixed time

2
G(r, t) =h exp(— > 1’2( )] ... a gaussian that spreads when increasing t
o (¢ 2
()= ﬂ
2 2
l
1 (Q,t ) = eXpL—QGT()] .. @ gaussian that shrinks when increasing t
l2

Gz(f)=Mﬁ

[28M 1 ‘0% (o
S (Q,a))z 4§ hz-éexp(—QGT()j ... a gaussian that shrinks when increasing energy

o’ (w)=M o’



Limits for the scattering functions (self and coh):

=0 t [=o0
liquid
G ( ,7, t) inc
liquid
inc
1(Q,1)
liquid
inc
S(Q,w)

(relation with t=)



" Diffussion
Diffussion: the patrticle tries to go to the place where the density is lower

oG, (r,t1)
ot

from this equation we get again a gaussian of the particle position
from her original position

DV*G (r,t)=

| e

G (r,t)= exXp| ———
(47th)32 4Dt

Being D the “diffussion coefficient”, or we could also read it as

bei
1 . "™ ol (t)=2Dt
G, (r,t) = 37 CXP| 5 can be com ith i
s\ pared with ideal gas
(205 (1)) 20,(1) g
ng(t) —
Mp

the “spreading is faster for an ideal gas (as expected)



" Diffussion
Diffussion: the patrticle tries to go to the place where teh density is lower

What is the diffussion coefficient??

1 r
eXp| ———

(472Dt)é 4Dt

G (r,t)=

Mean square displacement
() =([r®)-r(O)F)
<r2> = IFEGS (r,t)dr = 6Dt

1,
D=§("“>

Therefore D is related to the squared distance that a particle has advanced!!!



Limits for the scattering functions (self and coh):

t=0 [=c0
liquid
G(F.1) ‘
liquid
1(0,1)
liquid
S(Q,w)

(relation with t=)



" Classical approximation

We get the rest of correlation functions

1 r’
G, (riy=—ex [_]
(47Dt L an

]
1Q.0)= [ G(r.1)-¢?"dQ

>

1,(0,t)= exp(—Qth)
[ ]

S(0,w) = 21% j 1(0,1)-e " dt

v Surprise surprise:
a Lorentzian!!!!
1 I
Si( ,a))=— F:DQZ
that spreads with energy

7%+



Diffusion Incoherent scattering

Gs(rY) r, IqY) o Si{q.w) iy
/k G(-0) [ 1.0
Ay o
/A\\G(r,tz)
[ Glre) m I(q,)
i ) I,(g,t)=exp(-Dg’t) I Dy’
R (@0 =exp(=Dq’t) S (q.0)=—

7w +(Dg’)’

D: diffusion coefficient that’s what we measure!!



Gaussian approximation:

Since for long and short times there is a gaussian we say that for all times:

)= —exp| -2 _exp| L2
0 (2700° (1)) p( 202(f)j:>](Q’t) GXP( 2 j

and the mean square displacement:

<r2 (t)> = 47[]‘2 r’G (r,t)dr =30 (t)

diffusion

2 free particle ctual behaviour
.

oscillator

Liquid Argon

>
We have a link between movement and the scattering function!!!
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Incoherent scattering... beyond diffussion

Elastic peak [-.)
Quasi-elastic \_' w @
' - ° m ® | electronic
e® J vibrational N /
.j\ N ! (optic mode) n N

—e—>—>0

S(Q,m)

phonons

(acoustic mode)

rotational

0.1 1 10 100 1000
ho (meV)
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A real case: glycerol

PR LA




" N

A real case: glycerol

2 -2
Q° (A7)
00 0.2 04 06 08 10 12 14 16 18
L T 1 v i I LI | LI | LI | L I LI DL
60 |- -
—~ 40| Iz T ._rfﬂst—"""
& zof 175§ & 3 ¢ B
E = =
S -
-

fitting for all Q

Q=12A"7

¥ 1

-

Q
©

"

3 3

1012345 10123475 i o = = - - =
E (mev) 0 . 1 _l 1 ) 1 I. 1 L . n 1 1 1 L 1 L 1 1 1
00 02 04 06 08 1. 12 14 16 1.8

Q° (A’g)

Phys. Chem. Chem. Phys. 19, 12665, 2017
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A real case: phospholipid membrane

10"+

bl

i

1"

S(Q. @) [meV~']
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