Unit 2

Estimation of parameters

Luis Carlos Pardo

Escola d'Enginyeria de Barcelona Est

Summary

1.- Bayes theorem

- 2.- Maximum likelihood method
- **3.- Estimation of reliability parameters from tests**
- **4.- Confidence limits of parameters**
- 5.- Accelerated life testing
- 6.- Determination of distribution models
- 7.- Empirical determination of survivor function
- 8.- Reliability growth
- 9.- Strength-stress models

BAYES THEOREM

From the "multiplication" of probability:

 $prob(A, B) = prob(A) \cdot prob(B | A)$ $prob(A, B) = prob(B) \cdot prob(A | B)$

dividing the two eqations we get:

Bayes theorem

$$prob(A | B) = \frac{prob(B | A) prob(A)}{prob(B)}$$

That help us to reverse probabilities...

Bayes theorem

$$prob(H | D) = \frac{prob(D | H) prob(H)}{prob(D)}$$

Posterior prob(H|D):

What you want to know is the probability that your hypothesis is true given the data

Likelihood (or L) prob(D|H):

What you know is yout hypothesis. And therefore you can calculate the probability that your data "gathers" around your hypothesis

Prior prob(H):

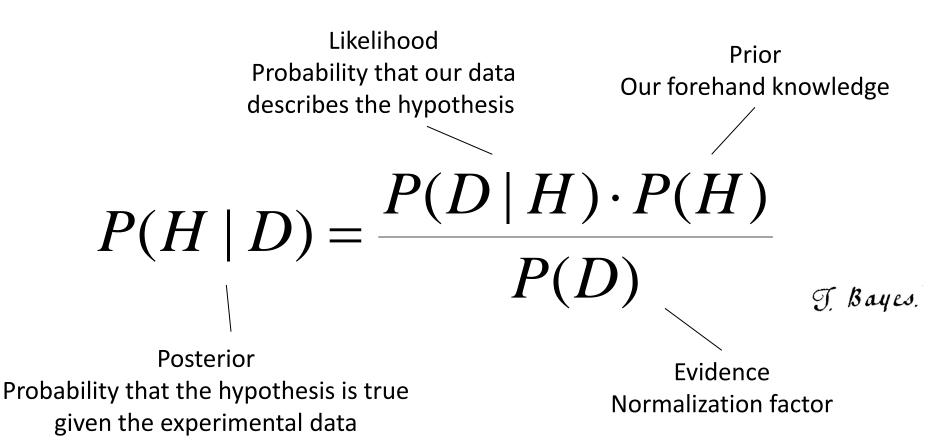
You might want to include any prioir information about your hypothesis

Evidence (E) prob(D):

Is "simply" a normalization factor...

The ubiquitous χ^2

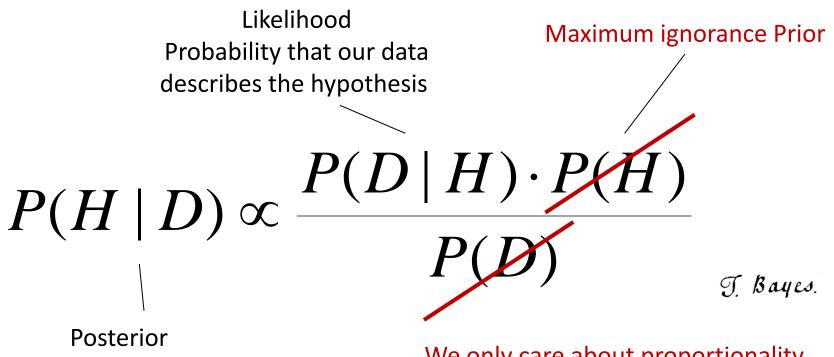
Bayes theorem



In our case is very simple...

The ubiquitous χ^2

Bayes theorem



Probability that the hypothesis is true given the experimental data

We only care about proportionality

The ubiquitous χ^2

Thus, assuming a maximum ignorance prior:

$prob(H \mid D) \propto prob(D \mid H) = L$

But what is exactly H, in practice?

It is a function and the parameters inside it

 $H_i(a,b) = a + bx_i$

Summary

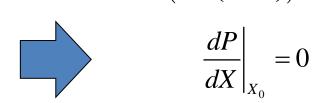
1.- Bayes theorem

- 2.- Maximum likelihood method
- **3.- Estimation of reliability parameters from tests**
- **4.- Confidence limits of parameters**
- 5.- Accelerated life testing
- 6.- Determination of distribution models
- 7.- Empirical determination of survivor function
- 8.- Reliability growth
- 9.- Strength-stress models

Parameter estimation

We would like to estimate the best estimate of a quantity, given some data. Let's define the posterior as: $prob(X | \{data\}) = P$

The best estimate of X is given by a maximum in its probability and thus



We want now to expand P as a Taylor series, since P varies too fast we take the logarithm of P

The Taylor expansion of L is:

Taking the first term we get for P:

Let's compare with a gaussian

$$L = \ln(P) = \ln\left(\operatorname{prob}\left(X \mid \{data\}\right)\right)$$

$$L = L(X_0) + \frac{1}{2} \frac{d^2 L}{dX^2} \bigg|_{X_0} (X - X_0)^2 + \dots$$

$$prob\left(X \mid \{data\}\right) \approx A \exp\left[\frac{1}{2} \frac{d^2 L}{dX^2} \right|_{X_0} \left(X - X_0\right)^2\right]$$

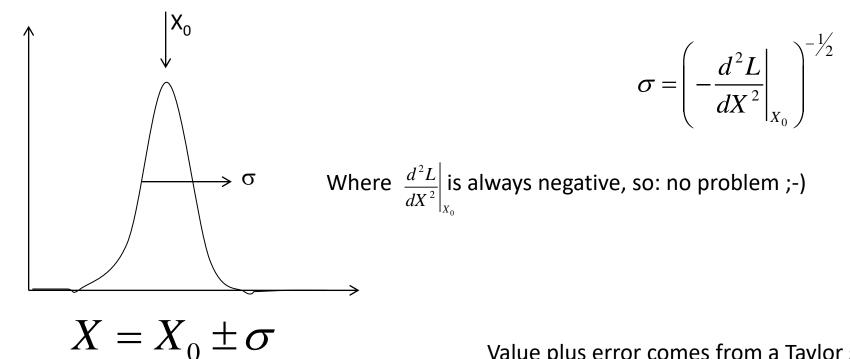
$$prob(X | \{data\}) \approx A \exp\left[\frac{(X - X_0)^2}{2\sigma^2}\right]$$

Comparing

$$prob(X | \{data\}) \approx A \exp\left[\frac{1}{2} \frac{d^2 L}{dX^2}\right|_{X_0} (X - X_0)^2\right]$$

Let's compare with a gaussian

$$prob(X | \{data\}) \approx A \exp\left[-\frac{(X - X_0)^2}{2\sigma^2}\right]$$

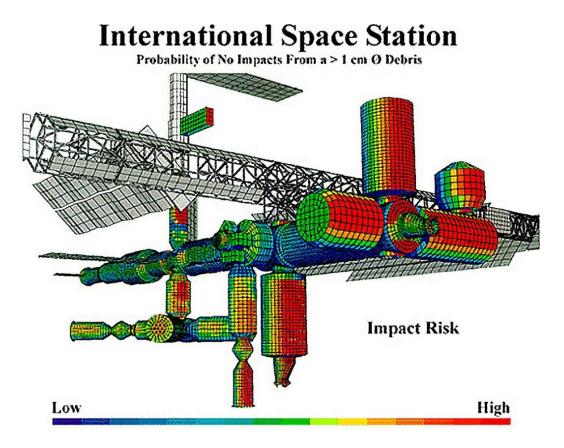


Value plus error comes from a Taylor series

Summary

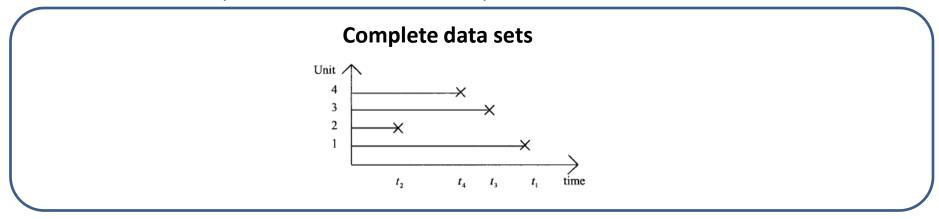
- 1.- Bayes theorem
- 2.- Maximum likelihood method
- **3.- Estimation of reliability parameters from tests**
- **4.- Confidence limits of parameters**
- **5.- Accelerated life testing**
- 6.- Determination of distribution models
- 7.- Empirical determination of survivor function
- 8.- Reliability growth
- 9.- Strength-stress models

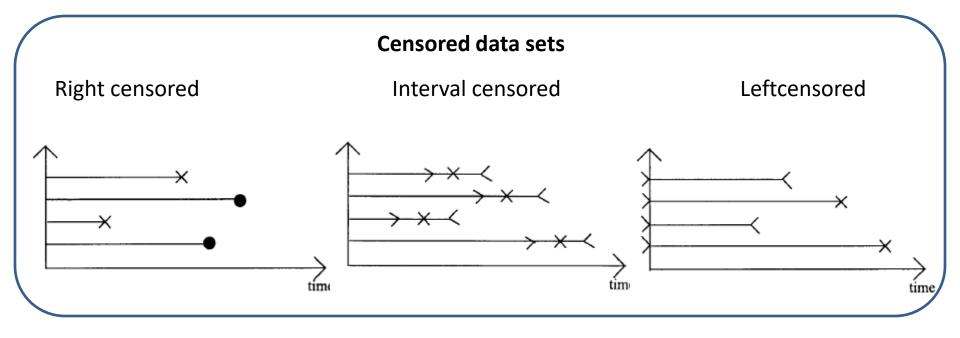
Let's perform tests to quantify risk analysis... before sending the ISS to the space!!!!



Types of tests:

Let's assume that we perform a test on n=4 components

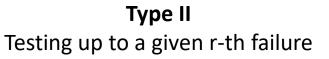


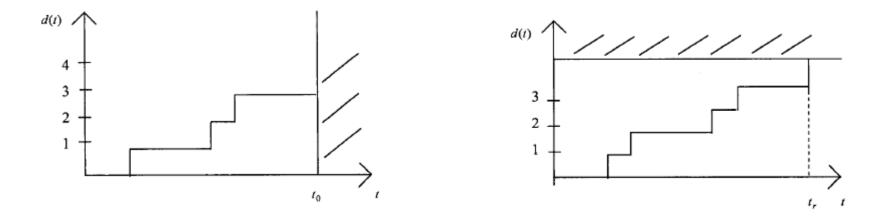


Types of tests:

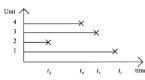
Test plans

Type I Testing up to a given time t0





They can also be with (R) or witgout (W) replacement



Determine the failure ratio λ , or its inverse, the **M**ean **T**ime **T**o **F**ailure MTTF τ for *n* equal units in the case of *non-censored* data

We calculate the likelihood that

$$L = \prod_{i=1}^{n} \lambda e^{-\lambda t_i} = \lambda e^{-\lambda t_1} \cdot \lambda e^{-\lambda t_2} \cdot \lambda e^{-\lambda t_3} \dots \lambda e^{-\lambda t_n} = \lambda^n e^{-\lambda T} \longleftarrow \begin{bmatrix} T = \sum_{i=1}^{n} t_i \end{bmatrix}$$

we take the logarithm	$\ln L = \ln \left(\lambda^n e^{-\lambda T} \right) = n \ln \lambda - \lambda T$
------------------------------	---

we make the **derivative**

$$\operatorname{n} L = \ln\left(\lambda^n e^{-\lambda T}\right) = n \ln \lambda - \lambda T$$

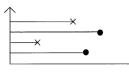
$$\frac{\partial \ln L}{\partial \lambda} = \ln \left(\lambda^n e^{-\lambda T} \right) = \frac{\partial \left(n \ln \lambda - \lambda T \right)}{\partial \lambda} = \frac{n}{\lambda} - T$$

we **set it to zero** (find the maximum)

$$\frac{n}{\hat{\lambda}} - T = 0$$

we finally find the **most probable value** for λ

$$\hat{\lambda} = \frac{n}{T}$$



Determine the failure ratio λ , or its inverse, the Mean Time To Failure MTTF τ for *n* equal units in the case of *right-censored* data type I (until to)

We calculate the **likelihood** that

$$L = \prod_{i=1}^{r} f\left(t_{i} \mid \lambda\right) \prod_{i=r+1}^{n} R\left(t_{0} \mid \lambda\right) = \lambda^{r} e^{-\lambda \sum_{i=1}^{t_{i}} t_{i}} e^{-\lambda(n-r)t_{0}} = \lambda^{r} e^{-\lambda T} \qquad \longleftarrow \qquad T = \sum_{i=1}^{n} t_{i} + (n-r)t_{0}$$
failure time right-censored

r

we take the logarithm	$\ln L = \ln \left(\lambda^r e^{-\lambda T} \right)$	$= r \ln \lambda - \lambda T$
------------------------------	---	-------------------------------

we make the **derivative**

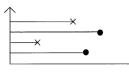
$$\frac{\partial \ln L}{\partial \lambda} = \ln \left(\lambda^r e^{-\lambda T} \right) = \frac{\partial \left(r \ln \lambda - \lambda T \right)}{\partial \lambda} = \frac{r}{\lambda} - T$$

we set it to zero (find the maximum)

$$\frac{r}{\hat{\lambda}} - T = 0$$

we finally find the most probable value for $\boldsymbol{\lambda}$

$$\hat{\ell} = \frac{r}{T}$$



Determine the failure ratio λ , or its inverse, the Mean Time To Failure MTTF τ for *n* equal units in the case of *right-censored* data type II (until r units fail)

We calculate the **likelihood** that

$$L = \prod_{i=1}^{r} \underbrace{f\left(t_{i} \mid \lambda\right)}_{i=r+1} \underbrace{\prod_{i=r+1}^{n} R\left(t_{i} \mid \lambda\right)}_{i=r+1} = \lambda^{r} e^{-\lambda \sum_{i=1}^{r} t_{i}} e^{-\lambda \sum_{i=r+1}^{n} t_{i}} = \lambda^{r} e^{-\lambda T} \qquad \longleftarrow \qquad T = \sum_{i=1}^{n} t_{i} + (n-r)t_{r}$$
failure right-censored

we take the logarithm $\ln L = \ln \left(\lambda^r e^{-\lambda T} ight) = r \ln \lambda - \lambda T$
--

we make the **derivative**

$$\frac{\partial \ln L}{\partial \lambda} = \ln \left(\lambda^r e^{-\lambda T} \right) = \frac{\partial \left(r \ln \lambda - \lambda T \right)}{\partial \lambda} = \frac{r}{\lambda} - T$$

we set it to zero (find the maximum)

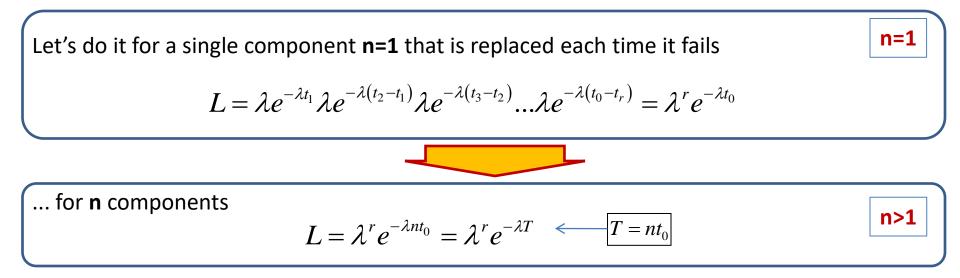
$$\frac{r}{\hat{\lambda}} - T = 0$$

we finally find the **most probable value** for λ

$$\hat{\ell} = \frac{r}{T}$$

...BUT YOU DO NOT WANT TO STOP PRODUCTION until r components fail

Determine the failure ratio λ , or its inverse, the Mean Time To Failure MTTF τ for *n* equal units in the case of *right-censored* data type I (until to) WITH REPLACEMENT

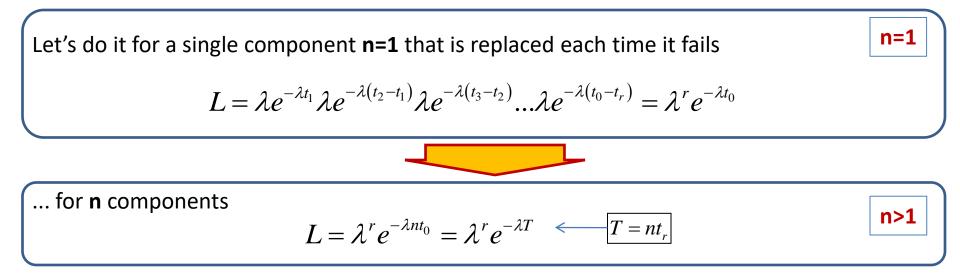


doing the same calculations as before...

we finally find the **most probable value** for
$$\lambda$$
 $\hat{\lambda} = \frac{r}{T}$

...BUT YOU DO NOT WANT TO STOP PRODUCTION until r components fail

Determine the failure ratio λ , or its inverse, the Mean Time To Failure MTTF τ for *n* equal units in the case of *right-censored* data type II (until r-th failure) WITH REPLACEMENT



doing the same calculations as before...

we finally find the **most probable value** for
$$\lambda$$
 $\hat{\lambda} = \frac{r}{T}$

summarizing: We want to keep the notation $\hat{\lambda} = \frac{r}{T}$

so, we change the meaning of T...

not censored, no replacement $T = \sum_{i=1}^{n} t_i$

	Censored Type I _(unit t0)	Censored Type II (unit r-th failure)
Without replacement	$T = \sum_{i=1}^{n} t_i + (n-r)t_0$	$T = \sum_{i=1}^{n} t_i + (n-r)t_r$
With replacement	$T = nt_0$	$T = nt_r$