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Summary 
 
1.- Bayes theorem 
2.- Maximum likelihood method 
3.- Estimation of reliability parameters from tests 
4.- Confidence limits of parameters: 
     normal distribution 



Let’s consider a PDF: 
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Confidence intervals: the general case 



Central limit theorem 

The distribution of the mean tends to be gaussian when increasing n 
no matters the pdf that originated the mean!!!! 

This is the good and the bad thing from statistics is based on the normal PDF!!!! 



Standard Normal distribution 
Standard Normal distribution (μ=0, σ=1) 
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Therefore, defining a “z-value”  
for the whole population as  
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Z follows a standard normal distribution function...  

Therefore, defining a  
“z-value” for n units x
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Normal distribution 
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Relation with probabilities 
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P-value for normal distribution for a value a: is related with the variance 
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So we have a relationship between confidence intervals and probability! 

There is a 68,2% of chances that your real value is inside your “error “ 

(assuming that x has a normal distribution;-) 
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Confidence intervals: the normal case 



standard normal table 



Confidence interval: 1-2α 
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Summary 
 
1.- Bayes theorem 
2.- Maximum likelihood method 
3.- Estimation of reliability parameters from tests 
4.- Confidence limits of parameters: 
     Chi-square distribution 



Problem 
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failure ratio does not follows a normal distribution!!! 

... but 2λT does follow a given distribution. Let me proudly introduce you the 
chi-square distribution 

Solution 
 



Chi-Squared distribution 

Do you remember the normal distribution: 
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We minimize Z2 in order to find μ... the following question arises:  

What is the PDF for Z2 itself? 



Chi-Squared distribution 

If Xi follow a standard normal distribution then  
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follow a so called χ2 distribution with k degrees of freedom defined as: 
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follows a standard normal distribution , i.e. χ2  follows N(k,√2k) 
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2 T is χ2 distributed with k degrees of freedom 

Type I (fixed t0) 
k=2r+2 

Type II (fixed r) 
k=2r 

T is the TOTAL test time 

λ is the failure ratio, and                 is the Mean Time To Failure 1

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2 T is χ2 distributed with k degrees of freedom 

Type I (fixed t0) 
k=2r+2 

Type II (fixed r) 
k=2r 

Type I (fixed t0) 
k=2r+2 

Let’s now calculate the confidence limits: 
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ONE SIDED (lower limit) 

Type I (fixed r 
k=2r 
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2 T is χ2 distributed with k degrees of freedom 

Type I (fixed t0) 
k=2r+2 

Type II (fixed r) 
k=2r 

Type I (fixed t0) 
k=2r+2 

Let’s now calculate the confidence limits: 

TWO SIDED (lower and upper limit) 

Type I (fixed r 
k=2r 

   2 2

1
2 2

2 2

2 2 2 2

T T
P

r r 

 
 



 
 

   
 
 

   2 2

1
2 2

2 2

2 2

T T
P

r r 

 
 



 
 

  
 
 

 

4.2, 4.3       









2/12/·)( xk exAxf 

 
2

2

1
2/ k

A
k 




