Unit 4



Model Selection

Luis Carlos Pardo

Escola d'Enginyeria de Barcelona Est

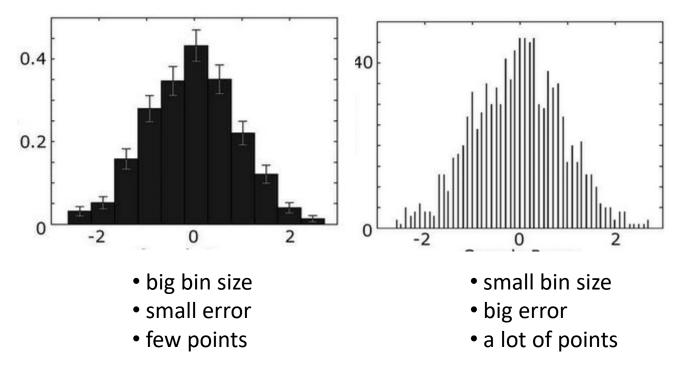
Summary

- 1.- Bayes theorem
- 2.- Maximum likelihood method
- **3.- Estimation of reliability parameters from tests**
- **4.- Confidence limits of parameters**
- **5.- Accelerated life testing**
- 6.- Determination of distribution models
- 7.- Empirical determination of survival function
- 8.- Reliability growth
- 9.- Strength-stress models

So, we have up to now ASSUMED the distribution f(t), but... what if the distribution is not known???

Let's assume that there are n units each failing at a time t_i

First we have to distribute them inside boxes: binning we must therefore decide the size of the binning!

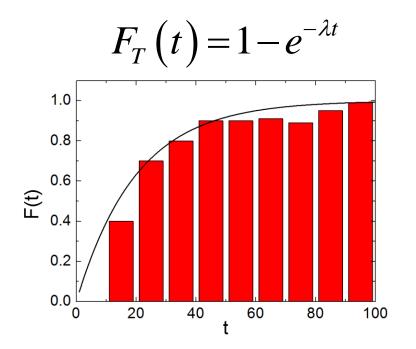


So, we have up to now ASSUMED the distribution f(t), but... what if the distribution is not known???

Let's assume that there are n units each failing at a time t_i

Now we must see if the obtained curve is a gaussian, or exponential, or weibull...

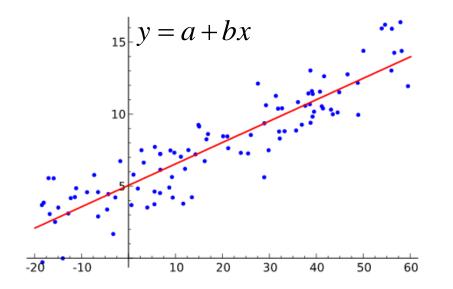
EXAMPLE: exponential. Normally this is done with the cumulative distribution



Do the points follow the simple exponential law? or maybe a Weibull

$$F_T(t) = 1 - e^{-(\lambda t)^{\beta}}$$

Fitting data: least squares



Remember the goals:

- 1.- Parameter estimation
- 2.- Modelling (Hypothesis testing)

Goal: to minimize the "total distance" of n exp. points $d_1+d_2+...d_n$ to the model

or more seriously.... to minimize the following variabel that follows a χ^2 -distribution and therefore D is normally distributed around H

$$\chi^{2} = \sum_{i=1}^{n} \frac{(D_{i} - H_{i})^{2}}{H_{i}}$$

Where D_i are the data pints, and H_i are the model expected values (Hypothesis)

... since for n large a χ^2 -distribution for point i tends to a gaussian with σ^2 =n=H_i

$$\chi^{2} = \sum_{i=1}^{n} \frac{(D_{i} - H_{i})^{2}}{H_{i}} \to \sum_{i=1}^{n} \frac{(D_{i} - H_{i})^{2}}{\sigma_{i}^{2}}$$

Fitting data: is the model right?

Let's do the question again (more precisse):

•Is the χ^2 arising after minimization

•When assuming that the data are normally distributerd around the model (hypothesis) •Following a χ^2 -distribution of (as it should?)

<u>Rule of thumb</u> (or the joys of the χ^2 -distribution)

The χ^2 should follow a χ^2 -distribution with n-m degrees of freedom arising for the data (with n points) and the model (with m=2 parameters)

For n data and 2 parameters μ =n-m and therefore the calculated χ^2 :

For this reason it seems reasonable to define a reduced χ^2 that should be about one

$$\chi^2_{red} = \frac{\chi^2}{n-m} \approx 1$$
 ... for a good fit

"Hypothesis testing"

Kolmogorov-Smirnov test: WE DO NOT NEED TO DECIDE A BINNING!!!!!

1.- We calculate the cumulative distribution function CDF from the PDF and the model $CDF(\chi^2) = \int_{-\infty}^{\chi^2} f(\chi^2) d\chi^2$

confidence limit

- 2.- We look at the maximum distance between the model and the calculated CDF
- 3.- We look at the table for confience limits

