## Unit 5



## **Empiric survival function**

### **Luis Carlos Pardo**

Escola d'Enginyeria de Barcelona Est

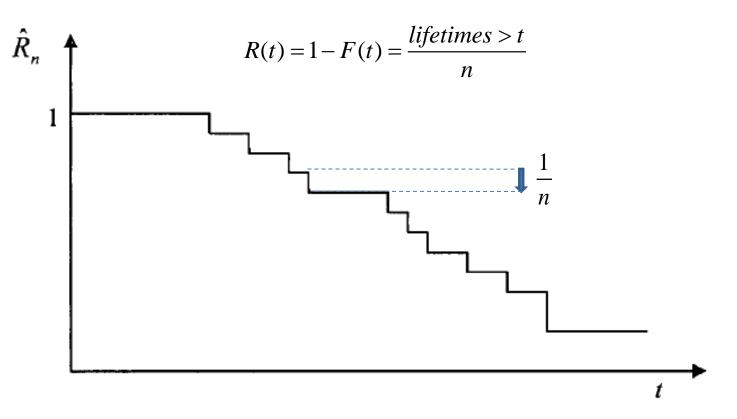
# Summary

- **1.-** Bayes theorem
- 2.- Maximum likelihood method
- **3.- Estimation of reliability parameters from tests**
- 4.- Confidence limits of parameters
- 5.- Accelerated life testing
- 6.- Determination of distribution models
- 7.- Empirical determination of survival function
- 8.- Reliability growth
- 9.- Strength-stress models

ok... but i don't want to find a model. I want to directly the experimental CDF...

For a non-censored experiment this is quite easy!

Let's do it with the survival function R(t): t<sub>i</sub> : is the lifetime of the unit i=1,2,3,... n



It must go down from 1 to 0 in n steps, therefore each step MUST be of height 1/n

ok... but i don't want to find a model. I want to directly the experimental CDF...

For a censored experiment is not that easy!

Let's do it with the survival function R(t):

t<sub>i</sub>: is the lifetime of the unit i=1,2,3,... n ( $u_i, u_{i+1}$ ]: is an interval between  $u_i$  and  $u_{i+1}$  small enough that only a t<sub>i</sub> falls into each interval

Let's calculate R(t) at a time t<sub>m</sub>

$$R(t_m) = P(T > t_m) = P(T > u_1 | T > u_0) \cdot P(T > u_2 | T > u_2) \cdot \dots P(T > t_m | T > u_m)$$

$$R(t_m) = P(T > t_m) = \prod_{i=0}^m P_i$$
$$P_i = P(T > u_{i+1} | T > u_i)$$

The goal is to calculate P<sub>i</sub>

$$R(t_m) = P(T > t_m) = \prod_{i=0}^m P_i$$
$$P_i = P(T > u_{i+1} | T > u_i)$$

remember:

Intervals  $(u_{i}, u_{i+1}]$  are small enough so that maximum 1 failure occurs

- 1. If neither failure or censoring occurs  $P_i=1$
- 2. If censoring occurs, no recording of failures occur, and again  $P_i=1$
- Imagine that a failure occurs in (u<sub>j</sub>, u<sub>j+1</sub>].
  The number of units at risk before are n<sub>j</sub>
  The number of units at risk after are n<sub>j</sub>-1

$$P_{i} = P(T > u_{i+1} | T > u_{i}) = \frac{n_{j} - 1}{n_{n}}$$

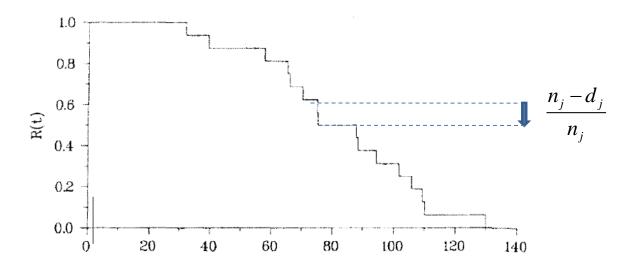
Therefore the intervals where no failure occur can be misregarded

Therefore, R(t) will go down each time a component fail, and R(t) can be represented as:

$$R(t_m) = P(T > t_m) = \prod_{i=0}^{m} P_i = \prod_{j=1}^{n_f} \frac{n_j - 1}{n_j}$$

If more than on unit fails at interval i, then if d<sub>j</sub> units fail:

$$R(t_m) = P(T > t_m) = \prod_{i=0}^{m} P_i = \prod_{j=1}^{n_f} \frac{n_j - d_j}{n_j}$$

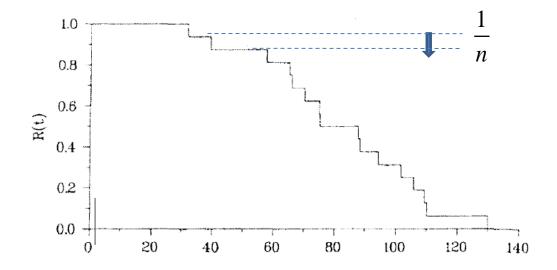


EXAMPLE:

A test is carried out for n=16 units, obtaining the folloring failure times

31.7 ; 39.2 ; 57.5 ; 65.0 ; 65.8 ; 70.0 ; 75.0 ; 75.2 ; 87.5 ; 88.3 ; 94.2 ; 101.7 ; 105.8 ; 109.2 ; 110.0 ; 130.0

Calculate the survival function R(t)



EXAMPLE (same times as before):

A test is carried out for n=16 units, obtaining the folloring failure times

31.7; 39.2; 57.5; 65.8; 70.0; 105.8; 110.0

The rest are censored tests Calculate the survival function R(t)

| Rank j | Inverse Rank<br>n-j+1 | Ordered Failure and Censoring Times $t_j$ | $\hat{p}_j$ | $\hat{R}(t_{(j)})$ |    |
|--------|-----------------------|-------------------------------------------|-------------|--------------------|----|
| 0      | -                     | -                                         | 1           | 1.000              | 7  |
| 1      | 16                    | 31.7                                      | 15/16       | 0.938              | 1  |
| 2      | 15                    | 39.2                                      | 14/15       | 0.875              | 7  |
| 3      | 14                    | 57.2                                      | 13/14       | 0.813              | 1  |
| 4      | 13                    | 65.0*                                     | 1           | 0.813              |    |
| 5      | 12                    | 65.8                                      | 11/12       | 0.745              |    |
| 6      | 11                    | 70.0                                      | 10/11       | 0.677              |    |
| 7      | 10                    | 75.0*                                     | 1           | 0.677              |    |
| 8      | 9                     | 75.2*                                     | 1           | 0.677              | ┦┗ |
| 9      | 8                     | 87.5*                                     | 1           | 0.677              |    |
| 10     | 7                     | 88.3*                                     | 1           | 0.677              | 1  |
| 11     | 6                     | 94.2*                                     | 1           | 0.677              | 1  |
| 12     | 5                     | 101.7*                                    | 1           | 0.677              | 1  |
| 13     | 4                     | 105.8                                     | 3⁄4         | 0.508              | 1  |
| 14     | 3                     | 109.2*                                    | 1           | 0.508              | 1  |
| 15     | 2                     | 110.0                                     | 1/2         | 0.254              |    |
| 16     | 1                     | 130.0*                                    | 1           | 0.254              |    |

| t                     | $\hat{R}(t)$                                |
|-----------------------|---------------------------------------------|
| $0 \le t < 31.7$      | =1                                          |
| 31.7 ≤ <i>t</i> <39.2 | 15/16=0.938                                 |
| $39.2 \le t < 57.5$   | 15/16-14/15=0.875                           |
| $57.5 \le t < 65.8$   | 15/16-14/15-13/14=0.813                     |
| $65.8 \le t < 70.0$   | 15/16-14/15-13/14-11/12=0.745               |
| $70.0 \le t < 105.8$  | 15/16-14/15-13/14-11/12-10/11=0.677         |
| $105.8 \le t < 110.0$ | 15/16-14/15-13/14-11/12-10/11-3/4=0.508     |
| $110.0 \le t$         | 15/16·14/15·13/14·11/12·10/11·3/4·1/2=0.254 |

EXAMPLE (same times as before):

A test is carried out for n=16 units, obtaining the folloring failure times

31.7; 39.2; 57.5; 65.8; 70.0; 105.8; 110.0

The rest are censored tests Calculate the survival function R(t)

