## Unit 6



## **Reliability growth**

### **Luis Carlos Pardo**

Escola d'Enginyeria de Barcelona Est

# Summary

- **1.-** Bayes theorem
- 2.- Maximum likelihood method
- **3.- Estimation of reliability parameters from tests**
- 4.- Confidence limits of parameters
- 5.- Accelerated life testing
- 6.- Determination of distribution models
- 7.- Empirical determination of survivor function
- 8.- Reliability growth
- 9.- Strength-stress models

#### Reliability growth:

#### Engineering changes cause an increase of reliability

Can be quantified:

- Cumulative number of failures as a function of time
- Failure rate  $h(t)=\lambda(t)$  as a function of time
- Mean time between failures (MTBF) as a function of time

We need, in any case, a reliability growth model

We do it using the MTBF, remember that:

$$MTBF_{cumulative} = \frac{Total\_operating\_period}{Number\_of\_failures} = \frac{t}{H(t)}$$

#### Reliability growth:

#### Engineering changes cause an increase of reliability

Can be quantified:

- Cumulative number of failures as a function of time
- Failure rate h(t)=λ(t) as a function of time
- Mean time between failures (MTBF) as a function of time

We need, in any case, a reliability growth model



#### Let's find the parameters of the Duane model: Maximum likelihood



Calculating de likelihood, making the logariothm and minimizing:



#### Let's find the parameters of the Duane model: Least squares

Example:

Let's calculate the parameters of the Duane analysis for the following data

| (1)                   | (2)                   | (3)                 | (4)                | (5)                                                       | (6)                           |
|-----------------------|-----------------------|---------------------|--------------------|-----------------------------------------------------------|-------------------------------|
| Month of<br>Operation | Hours of<br>Operation | Cumulative<br>Hours | No. of<br>failures | Cumulative<br>Number of<br>failures <i>H</i> ( <i>t</i> ) | Cumulative<br>MTBF<br>t/H'(t) |
| 1                     | 541                   | 541                 | 3                  | 3                                                         | 180.3                         |
| 2                     | 1171                  | 1712                | 5                  | 8                                                         | 214.0                         |
| 3                     | 1939                  | 3651                | 4                  | 12                                                        | 304.3                         |
| 4                     | 2403                  | 6054                | 1                  | 13                                                        | 465.7                         |
| 5                     | 1718                  | 7772                | 2                  | 15                                                        | 518.1                         |
| 6                     | 2206                  | 9978                | 2                  | 17                                                        | 586.9                         |
| 7                     | 1366                  | 11244               | 3                  | 20                                                        | 562.2                         |
| 8                     | 1529                  | 12873               | 0                  | 20                                                        | 643.7                         |
| 9                     | 1449                  | 14322               | 2                  | 22                                                        | 651.0                         |
| 10                    | 1451                  | 15773               | 2                  | 24                                                        | 657.2                         |

Let's find the parameters of the Duane model: Least squares Let's first do the figure:

Duane Model $H(t) = \left(\frac{t}{\tau}\right)^{\beta}$ 

linearized Duane Model $\ln(H(t)) = \beta \ln t - \beta \ln \tau$ 



 $\beta$ <1 : reliability growth

#### Let's now add MONEY

Imagine a system whose failure causes production stoppage:

• Failure costs Cr (include production stoppage)

• Complete overhaul costs *Co* (includes lost of production, replacement and labour) What is the optimum overhaul policy?



and we want o minimize this cost...

$$\gamma(t) = \frac{C(t)}{t} = \frac{C_r \left(\frac{t}{\tau}\right)^{\beta} + C_o}{t}$$

Therefore, the cost/unit operating time is

and we want o minimize this cost...

We solve the equation

$$\frac{d\gamma(t)}{dt} = 0$$

And we obtain that the optimal overhaul time is

$$t^* = \tau \left[ \frac{\alpha^{\beta} C_o}{C_r \left(\beta - 1\right)} \right]^{1/\beta}$$

The overhaul time increases with Co... since it is expensive to do, and increases with Cr, since if it is expensive is better to cannge it

And the time is  $\infty$  for  $\beta=1$  (exponential)... therefore do never change

We can learn more looking at the cost/unit operating time



... when in doubt, do it later!