

## **Basics of Neutron Scattering**

Luis Carlos Pardo Soto



UNIVERSITAT POLITÈCNICA

DE CATALUNYA





3-axis spectrometer



THE NEUTRON



### WAVE

UNIVERSITAT POLITÈCNICA DE CATALUNYA



They can interfere

 $\lambda = h / mv$ 

diffraction

#### POSITION

#### PARTICLE



Energy is related to velocity  $\rightarrow$  to  $\lambda$ 

 $E = 1/2mv^2 = h^2 / 2m\lambda^2$ 

**Energy exchanged with sample** 

#### **DYNAMICS**

...wave-Particle duality was never so nicely exploited

 $m_n = 1.675 \cdot 10^{-27} \text{ kg}$ 







#### NEUTRON PRODUCTION



## **Spallation**

#### **Fission**





# ISIS (UK)



## ess (Lund)

## ILL (france)



FRMII(germany)





**Fission** 

# continuous source



#### How do we take out the neutrons from the reactor They are unstopable (more or less)



like a stone that bounces in a lake...



# continuous source



How do we take out the neutrons from the reactor They are unstopable (more or less)





# continuous source



How do we take out the neutrons from the reactor They are unstopable (more or less)



This makes neutron "optics" quite funny...



#### Nice thing about neutrons



they are complementary (or necessary) to X-Rays:

You CANNOT see hydrogen with X-rays, but you see metals very nicelly

You CANNOT see metals with neutrons, but you see hydrogen very nicelly (this means that you can have "heavy ancilliary" equipment)



#### Nice thing about neutrons



## Comparison of X-ray and Neutron Radiographs





Neutrons

you see metal

you see plastic

https://www.youtube.com/watch?v=VESMU7JfVHU



#### SCATTERING CROSS SECTION



Partial differential cross section:

number of neutrons/photons scattered per second into a small solid angle  $d\Omega$  in the direction  $\theta$  and  $\phi$  with final energy between E' and E'+dE



 $\frac{you\ can\ integrate\ (marginalize)\ the\ energy}{number\ of\ neutrons/photons\ scattered\ per\ second\ into\ a\ small\ solid} \qquad \frac{\partial^2 \sigma}{\partial \Omega}$ angle  $d\Omega$  in the direction  $\theta$  and  $\varphi$ 





Scattering by a single nucleous:



... which is related to the interaction potential between neutron and nucleus

$$V(r) = \frac{2\pi\hbar^2}{m} b \cdot \delta(r)$$





#### How is it related to the sample physics?

UNIVERSITAT POLITÈCNICA

DE CATALUNYA



and isotope

emits a spherical wave (CLASSICAL APPROXIMATION!)



#### How is it related to the sample physics?

UNIVERSITAT POLITÈCNICA

DE CATALUNYA



and isotope

emits a spherical wave (CLASSICAL APPROXIMATION!)



#### How is it related to the sample physics?

UNIVERSITAT POLITÈCNICA

DE CATALUNYA





#### COHERENT AND INCOHERENT SCATTERING













#### **Coherent and incoherent scattering**

COHERENT (warning!!! it does include the self part!!!!!)

$$\left(\frac{\partial^2 \sigma}{\partial \Omega \partial \omega}\right)_{coh} = \frac{k}{k_0} \frac{b_{coh}^2}{N \cdot 2\pi} \int_{-\infty}^{\infty} \sum_{i,j} \left\langle e^{i\vec{Q}\vec{R}_i(t)} \cdot e^{-i\vec{Q}\vec{R}_j(0)} \right\rangle e^{-i\omega t} dt$$
$$b_{coh}^2 = \overline{b}^2 \quad \text{and} \quad \sigma_{coh} = 4\pi \overline{b}^2$$

$$\left(\frac{\partial^2 \sigma}{\partial \Omega \partial \omega}\right)_{inc} = \frac{k}{k_0} \frac{b_{inc}^2}{N \cdot 2\pi} \int_{-\infty}^{\infty} \sum_{i} \left\langle e^{i\vec{Q}\vec{R}_i(t)} \cdot e^{-i\vec{Q}\vec{R}_i(0)} \right\rangle e^{-i\omega t} dt$$

$$b_{inc}^2 = \overline{b^2} - \overline{b}^2$$
 and  $\sigma_{inc} = \overline{b^2} - \overline{b}^2$ 

$$\frac{\partial^2 \sigma}{\partial \Omega \partial \omega} = \begin{bmatrix} \frac{\partial^2 \sigma}{\partial \Omega \partial \omega} \end{bmatrix}_{coherent} + \begin{bmatrix} \frac{\partial^2 \sigma}{\partial \Omega \partial \omega} \end{bmatrix}_{incoherent}$$

#### **Coherent and incoherent scattering**



UNIVERSITAT POLITÈCNICA

DE CATALUNYA

#### **Coherent and incoherent scattering**



UNIVERSITAT POLITÈCNICA





*In the scattering cross-section: Is the "self" part of coherent scattering the same as the "self"?* 

**NO:** one goes with  $\sigma_{coh}$  and the other with  $\sigma_{inc}$  !!!



WHY IS THAT IMPORTANT?



# **COHERENT** SCATTERING diffraction & collective movements



BIOLOGY!=hydrogen!!



 $\sigma_{inc}$  (H)=80.26 barn  $\sigma_{inc}$  (D)=2.05 barn



 $\sigma_{coh}$  (H)=1.7568 barn  $\sigma_{coh}$  (D)=5.592 barn



UNIVERSITAT POLITÈCNICA DE CATALUNYA

Let's mix water with a byological molecule...

 $\sigma_{coh}$  (H)=1.7568 barn  $\sigma_{coh}$  (D)=5.592 barn



# Contrast (movements)

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Let's mix water with a byological molecule...

 $\sigma_{inc}$  (H)=80.26 barn  $\sigma_{inc}$  (D)=2.05 barn





# Contrast (diffraction)

With other substances... for example in water. let's play...

 $\sigma_{coh}$  (H)=1.7568 barn  $\sigma_{coh}$  (D)=5.592 barn  $\sigma_{coh}$  (O)=4.232 barn  $\sigma_{inc}$  (H)=80.26 barn  $\sigma_{inc}$  (D)=2.05 barn  $\sigma_{inc}$  (O)=0.0008 barn



