Basics of Neutron Scattering

Luis Carlos Pardo Soto

The 1994 Nobel Prize in Physics - Shull \&
Brockhouse.

Neutrons show where the atoms.......

...and what the atoms do.

THE NEUTRON

WAVE

They can interfere

$$
\lambda=\mathrm{h} / \mathrm{mv}
$$

diffraction
POSITION

PARTICLE

Energy is related to velocity \rightarrow to λ
$\mathrm{E}=1 / 2 \mathrm{mv} v^{2}=\mathrm{h}^{2} / 2 \mathrm{~m} \lambda^{2}$

Energy exchanged with sample DYNAMICS

STRUCTURE

Position $=$ detectors

DYNAMICS

Energy $=$ Time of flight
$" 1 / 2 m v^{2 "} \quad v=x / t$

TEMPERATURE				
	cold	是	thermal	hot
Temperature	$T=25 \mathrm{~K}$	㫛	$T=300 \mathrm{~K}$	$T=2000 \mathrm{~K}$
Energy	$E=2 \mathrm{meV}$		$E=25 \mathrm{meV}$	$E=170 \mathrm{meV}$
Velocity	$v=500 \mathrm{~m} / \mathrm{s}$	ariaul	$v=2200 \mathrm{~m} / \mathrm{s}$	$v=m / s$
Wavelength λ	$\lambda=3.5 \AA$		$\lambda=1.8 \AA$	$\lambda=0.5 \AA$

FAST MOTIONS (energy range)

NEUTRON PRODUCTION

Spallation

ISIS (UK)

ess (Lund)

Fission

ILL (france)

FRMII(germany)

Spallation

pulsed source

1 GeV protons accelerated by LINAC or Synchrotron
shoot against a

Heavy metal (Hg) target

Fission

continuous source

How do we take out the neutrons from the reactor They are unstopable (more or less)

like a stone that bounces in a lake...

Fission

continuous source

How do we take out the neutrons from the reactor They are unstopable (more or less)

Fission

continuous source

How do we take out the neutrons from the reactor
They are unstopable (more or less)

This makes neutron "optics" quite funny...

Nice thing about neutrons

they are complementary (or necessary) to X-Rays:

You CANNOT see hydrogen with X-rays, but you see metals very nicelly
You CANNOT see metals with neutrons, but you see hydrogen very nicelly (this means that you can have "heavy ancilliary" equipment)

Nice thing about neutrons

Comparison of X-ray and Neutron Radiographs

you see metal

Neutrons
you see plastic

What do we measure?

Partial differential cross section:

number of neutrons/photons scattered per second into a small solid angle $d \Omega$ in the direction θ and φ with final energy between E' and E'+dE
you can integrate (marginalize) the energy

Scattering by a single nucleous:

TOTAL scattering cross section

$$
\sigma_{t o t}=\iint \frac{\partial \sigma}{\partial \Omega \partial E} 4 \pi b^{2} d \Omega d E=4 \pi b^{2}
$$

... which is related to the interaction potential between neutron and nucleus

$$
V(r)=\frac{2 \pi \hbar^{2}}{m} b \cdot \delta(r)
$$

What do we measure?

Where do neutrons go?

How is it related to the sample physics?

Neutron change of direction (and eneroc)
Neutron change of energy

$$
\vec{Q}=\vec{k}-\vec{k}_{0} \quad \hbar \omega=E-E_{0}=\frac{\hbar^{2}}{2 m}\left(k^{2}-k_{0}^{2}\right)
$$

$$
\frac{\partial^{2} \sigma}{\partial \Omega \partial \omega}=\frac{k}{k_{0}} \frac{1}{N \cdot 2 \pi} \int_{-\infty}^{\infty} \sum_{i} \sum_{j}\left\langle b_{i} e^{i \vec{Q} \vec{R}_{i}(t)} \cdot b_{j} e^{-i \vec{Q} \vec{R}_{j}(0)}\right\rangle e^{-i \omega t} d t
$$

Scattering cross section Particle position at times 0 and t depends on spin emits a spherical wave and isotope (CLASSICAL APPROXIMATION!)

How is it related to the sample physics?

Neutron change of direction (and enercoy)
\rightarrow Neutron change of energy

$$
\vec{Q}=\vec{k}-\vec{k}_{0} \quad \hbar \omega=E-E_{0}=\frac{\hbar^{2}}{2 m}\left(k^{2}-k_{0}^{2}\right)
$$

$$
\frac{\partial^{2} \sigma}{\partial \Omega \partial \omega}=\frac{k}{k_{0}} \frac{1}{N \cdot 2 \pi} \int_{-\infty}^{\infty} \sum_{i} \sum_{j}\left\langle b_{i} e^{i \vec{Q} \vec{R}_{i}(t)} \cdot b_{j} e^{-i \vec{Q} \vec{R}_{j}(0)}\right\rangle e^{-i \omega t} d t
$$

Scattering cross section Particle position at times 0 and t depends on spin emits a spherical wave and isotope (CLASSICAL APPROXIMATION!)

How is it related to the sample physics?

Neutron change of direction (and enerocy) Neutron change of energy

$$
\vec{Q}=\vec{k}-\vec{k}_{0} \quad \hbar \omega=E-E_{0}=\frac{\hbar^{2}}{2 m}\left(k^{2}-k_{0}^{2}\right)
$$

$i=j$ and $i \neq j$!!!!! $\left\{\begin{array}{l}>i=j \text { measurement of a single particle trajectory } \\ >i \neq j \text { measurement of diferent particles trajectory }\end{array}\right.$

COHERENT AND INCOHERENT SCATTERING

$$
\sum_{i \neq j} b_{i} b_{j} e^{i \vec{Q} \vec{R}_{i}(t)} \cdot e^{-i \vec{Q} \vec{R}_{j}(0)}+\sum_{i=j} b_{i} b_{i} e^{\begin{array}{l}
\text { SELF } \\
i \vec{Q} \vec{R}_{i}(t)
\end{array}} \cdot e^{-i \vec{Q} \vec{R}_{i}(0)}
$$

GOAL: separate "one particle" from "different particles"
b_{i} depends on isotope and spin state $\sum \sum b_{i} e^{i \bar{Q}_{i}(t)} \cdot b_{j} e^{-i \bar{Q} \vec{R}_{j}(0)}$ b_{i} depends on isotope and spin state

$$
\begin{aligned}
& \text { DISTINCT SELF } \\
& \sum_{i \neq j} b_{i} b_{j}\left\langle e^{i \vec{Q} \vec{R}_{i}(t)} \cdot e^{-i \vec{Q} \vec{R}_{j}(0)}\right\rangle+\sum_{i=j} b_{i} b_{i}\left\langle e^{i \vec{Q} \vec{R}_{i}(t)} \cdot e^{-i \vec{Q} \vec{R}_{i}(0)}\right\rangle \\
& \bar{b} \\
& \sum_{i \neq j} \vec{b}^{2} e^{i \vec{Q} \vec{R}_{i}(t)} \cdot e^{-i \vec{Q} \vec{R}_{i}(0)}+\sum_{i=j} \bar{b}^{2} e^{i \vec{Q} \vec{R}_{i}(t)} \cdot e^{-i \vec{Q} \vec{R}_{i}(0)} \\
& +\sum_{i=j} \bar{b}^{2} e^{i \vec{Q} \vec{R}_{i}(t)} \cdot e^{-i \vec{Q} \vec{R}_{i}(0)}-\sum_{i=j} \bar{b}^{2} e^{i \vec{Q} \vec{R}_{i}(t)} \cdot e^{-i \vec{Q} \vec{R}_{i}(0)} \\
& \sum_{i, j} \bar{b}^{2} e^{i \vec{Q} \vec{R}_{i}(t)} \cdot e^{-i \vec{Q} \vec{R}_{j}(0)}+\sum_{i=j} \underline{\left(\overline{b^{2}}-\bar{b}^{2}\right)} \cdot e^{i \vec{Q} \vec{R}_{i}(t)} \cdot e^{-i \vec{Q} \vec{R}_{i}(0)} \\
& \sum_{i, j} b_{c o h}^{2}\left\langle e^{i \vec{Q} \vec{R}_{i}(t)} \cdot e^{-i \vec{Q} \vec{R}_{j}(0)}\right\rangle+\sum_{i=j} b_{i n c}^{2} \cdot\left\langle e^{i \vec{Q} \vec{R}_{i}(t)} \cdot e^{-i \vec{Q} \vec{R}_{i}(0)}\right\rangle
\end{aligned}
$$

(warning!!! it does include the self part!!!!!)

$$
\left(\frac{\partial^{2} \sigma}{\partial \Omega \partial \omega}\right)_{c o h}=\frac{k}{k_{0}} \frac{b_{c o h}^{2}}{N \cdot 2 \pi} \int_{-\infty}^{\infty} \sum_{i, j}\left\langle e^{i \vec{Q} \vec{R}_{i}(t)} \cdot e^{-i \vec{Q} \vec{R}_{j}(0)}\right\rangle e^{-i \omega t} d t
$$

$$
b_{c o h}^{2}=\bar{b}^{2} \text { and } \sigma_{c o h}=4 \pi \bar{b}^{2}
$$

INCOHERENT

$$
\begin{gathered}
\left(\frac{\partial^{2} \sigma}{\partial \Omega \partial \omega}\right)_{i n c}=\frac{k}{k_{0}} \frac{b_{i n c}^{2}}{N \cdot 2 \pi} \int_{-\infty}^{\infty} \sum_{i}\left\langle e^{i \vec{Q} \vec{R}_{i}(t)} \cdot e^{-i \vec{Q} \vec{R}_{i}(0)}\right\rangle e^{-i \omega t} d t \\
b_{i n c}^{2}=\overline{b^{2}}-\bar{b}^{2} \text { and } \sigma_{\text {inc }}=\overline{b^{2}}-\bar{b}^{2} \\
\frac{\partial^{2} \sigma}{\partial \Omega \partial \omega}=\left[\frac{\partial^{2} \sigma}{\partial \Omega \partial \omega}\right]_{\text {coherent }}+\left[\frac{\partial^{2} \sigma}{\partial \Omega \partial \omega}\right]_{\text {incoherent }}
\end{gathered}
$$

INCOHERENT $>i=j \quad b_{\text {ine }}^{2} e^{i\left(i\left[R_{4}(1)-R(0)\right.\right.}$ SCATTERING
 $$
\begin{gathered} \text { COHERENT } \Rightarrow \forall \mathrm{i}, \mathrm{j} \quad b_{c o h}^{2} \cdot e^{i \vec{Q}\left[\vec{R}_{j}(t)-\vec{R}_{i}(0)\right]} \\ \text { SCATERING } \begin{array}{c} \vec{R}_{j}(0) \\ \vec{R}_{i}(0) \\ \vec{R}_{j}(0)-\vec{R}_{i}(0) \end{array} \end{gathered}
$$ $$
\begin{tabular}{|c|c|c|} \hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l} COHERENT SCATTERING \[\left[\frac{\partial^{2} \sigma}{\partial \Omega \partial \omega}\right]_{\text {coherent }}=\frac{1}{N} \frac{k}{k_{0}} \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} b_{\alpha}^{\text {coh }} b_{\beta}^{\text {coh }} \sqrt{N_{\alpha} N_{\beta}} \cdot S^{\alpha \beta}(\vec{Q}, \omega) \] \\ a lot of them \end{tabular}
$$

} \& $b_{i} b_{j} \cdot e^{i Q}$
\hline \& \& $$
\vec{R}_{i}(0) \int_{\vec{R}_{j}(0)-\vec{R}_{i}(0)}^{\vec{R}_{i}(0)}
$$

\hline \& \&

\hline
\end{tabular}

INCOHERENT SCATTERING

 $\mathrm{i}=\mathrm{j}$
a single particle "self" contribution

COHERENT SCATTERING

In the scattering cross-section:
Is the "self" part of coherent scattering the same as the "self"?
NO: one goes with $\sigma_{\text {coh }}$ and the other with $\sigma_{\text {inc }}$!!!

INCOHERENT SCATTERING

movement of a single particle

COHERENT SCATTERING

diffraction \& collective movements

INCOHERENT SCATTERING

movement of a single particle

$$
\sigma_{\text {inc }}(H)=80.26 \text { barn } \sigma_{\text {inc }}(D)=2.05 \text { barn }
$$

COHERENT SCATTERING

diffraction \& collective movements

$$
\sigma_{\text {coh }}(\mathrm{H})=1.7568 \text { barn } \quad \sigma_{\text {coh }}(\mathrm{D})=5.592 \text { barn }
$$

Contrast (diffraction)

Let's mix water with a byological molecule...

$$
\sigma_{\text {coh }}(\mathrm{H})=1.7568 \text { barn } \quad \sigma_{\text {coh }}(\mathrm{D})=5.592 \text { barn }
$$

Contrast (movements)

Let's mix water with a byological molecule...

$$
\sigma_{\text {inc }}(H)=80.26 \text { barn } \sigma_{\text {inc }}(\mathrm{D})=2.05 \text { barn }
$$

Contrast (diffraction)

With other substances... for example in water. let's play... $\sigma_{\text {coh }}(\mathrm{H})=1.7568$ barn $\quad \sigma_{\text {coh }}(\mathrm{D})=5.592$ barn $\sigma_{\text {coh }}(\mathrm{O})=4.232$ barn $\sigma_{\text {inc }}(H)=80.26$ barn $\quad \sigma_{\text {inc }}(D)=2.05$ barn $\quad \sigma_{\text {inc }}(O)=0.0008$ barn

TOF Neutrons (SANDALS, ISIS)

DOI: 10.1021/acs.chemrev.5b00663

