HIGH-PRESSURE POLYMORPHISM

Grup de Caracterització de Materials June 2009

- **1.- Introduction**
 - \rightarrow ODIC phases
 - \rightarrow Compounds and objectives
 - \rightarrow Metastability
 - \rightarrow Isomorfism
- 2.- Experimental techniques
 - \rightarrow Calorimetry
 - \rightarrow Diffractometry
 - \rightarrow Dilatometry
- **3.-** Pure compounds
 - \rightarrow CBr₄
 - \rightarrow Cl₃CBr
- 4.- Binary System (Cl₃CBr)_{1-X} (CBr₄)_X
- 5.- Results
- 6.- Conclusions
- 7.- New Compounds

1.- Introduction

- \rightarrow ODIC phases
- \rightarrow Compounds and objectives
- → Metastability
- \rightarrow Isomorfism
- 2.- Experimental techniques
 - \rightarrow Calorimetry
 - → Diffractometry
 - → Dilatometry
- **3.-** Pure compounds
 - \rightarrow CBr₄
 - \rightarrow Cl₃CBr
- 4.- Binary System (Cl₃CBr)_{1-X} (CBr₄)_X
- 5.- Results
- 6.- Conclusions
- 7.- New Compounds

ODIC phases

- Phases with translational order and no orientational order
- High simetry structures

Compounds

Halogen derivates of

neopentane and ethane

- Cyclic compounds
- Adamantane derivates

Objectives

Polymorphism

→ Thermal and Crystallographic characteritzation at high pressure

Alloy forming between compounds

 $\rightarrow p_{normal}$

Binary sistems at p_{normal}

1. Introduction

Pressure – Temperature 450 [L] **Αβ** 400 [γ] P 8-8⁹⁸⁶ 350 T/K 300 250 [α] 200 100 200 300 0 P/MPa

300

<u>β</u> [β],

[γ]

[α]

P/MPa

200

100

Pressure – Temperature

Cross isodimorfism

X

Cross isodimorfism

X

Cross isodimorfism

Х

- \rightarrow ODIC phases
- \rightarrow Compounds and objectives
- → Metaestability
- \rightarrow Isomorfism
- 2.- Experimental techniques
 - \rightarrow Calorimetric
 - \rightarrow Difractometric
 - \rightarrow Dilatometric
- **3.-** Pure compounds
 - \rightarrow CBr₄
 - \rightarrow Cl₃CBr
- 4.- Binary System (Cl₃CBr)_{1-X} (CBr₄)_X
- 5.- Results
- 6.- Conclusions
- 7.- New Compounds

Experimental techniques

()

Diferential Thermal Analysis

- At normal pressure (comercial)
 - De 0 a 300 MPa (no comercial)

INEL difractometer

Experimental techniques N

1.- Introduction

- \rightarrow ODIC phases
- ightarrow Compounds and objectives
- → Metaestability
- \rightarrow Isomorfism
- 2.- Experimental techniques
 - \rightarrow Calorimetric
 - \rightarrow Difractometric
 - → Dilatometric

3.- Pure compounds

 \rightarrow CBr₄

→ Cl₃CBr

- 4.- Binary System (Cl₃CBr)_{1-X} (CBr₄)_X
- 5.- Results
- 6.- Conclusions
- 7.- New Compounds

Cl₃CBr

• C

Oliver Cl

<mark>⊖</mark> Br

- **1.- Introduction**
 - \rightarrow ODIC phases
 - ightarrow Compounds and objectives
 - → Metaestability
 - \rightarrow Isomorfism
- 2.- Experimental techniques
 - \rightarrow Calorimetric
 - \rightarrow Difractometric
 - \rightarrow Dilatometric
- **3.-** Pure compounds
 - \rightarrow CBr₄
 - \rightarrow Cl₃CBr

4.- Binary System (Cl₃CBr)_{1-X} (CBr₄)_X

- 5.- Results
- 6.- Conclusions
- 7.- New Compounds

Diagrama T-X experimental

 \times System Br4 $1-\times$ Binary Br m

Diagrama T-X experimental

imes

4

Y

System

Binary

- **1.- Introduction**
 - \rightarrow ODIC phases
 - ightarrow Compounds and objectives
 - → Metaestability
 - \rightarrow Isomorfism
- 2.- Experimental techniques
 - \rightarrow Calorimetric
 - \rightarrow Difractometric
 - \rightarrow Dilatometric
- **3.-** Pure compounds
 - \rightarrow CBr₄
 - \rightarrow Cl₃CBr
- 4.- Binary System (Cl₃CBr)_{1-X} (CBr₄)_X

5.- Results

- 6.- Conclusions
- 7.- New Compounds

T-X diagram discussion

esults interpretatior C S

Enthalpic interpolation

Results interpretation S

- **1.- Introduction**
 - \rightarrow ODIC phases
 - ightarrow Compounds and objectives
 - → Metaestability
 - \rightarrow Isomorfism
- 2.- Experimental techniques
 - \rightarrow Calorimetric
 - \rightarrow Difractometric
 - \rightarrow Dilatometric
- **3.-** Pure compounds
 - \rightarrow CBr₄
 - \rightarrow Cl₃CBr
- 4.- Binary System (Cl₃CBr)_{1-X} (CBr₄)_X
- 5.- Results

6.- Conclusions

7.- New Compounds

- Se ha determinado el diagrama experimental PVT y el diagrama experimental PT del Br4C, con la aparición de una nueva fase de alta presión con simetría romboédrica ODIC.
- Se ha determinado experimentalmente el sistema binario BrCl3C-Br4C, comprobando el isomorfismo entre sus fases monoclínicas y FCC; y mediante el formalismo del isodimorfismo cruzado se infiere una fase de alta presión con simetría romboédrica y orientacionalmente desordenada, estudiándose la coherencia del sistema binario con el compuesto puro.

1.- Introduction

- \rightarrow ODIC phases
- ightarrow Compounds and objectives
- → Metaestability
- \rightarrow Isomorfism
- 2.- Experimental techniques
 - \rightarrow Calorimetric
 - \rightarrow Difractometric
 - \rightarrow Dilatometric
- **3.-** Pure compounds
 - \rightarrow CBr₄
 - \rightarrow Cl₃CBr
- 4.- Binary System (Cl₃CBr)_{1-X} (CBr₄)_X
- 5.- Results
- 6.- Conclusions
- 7.- New Compounds

Neopentane Chlor Derivatives

Thermal analysis

New Compound

Binary Systems

New Compounds

Gracias por su atención

La força d'un sentiment

