Microscopic constituents of matter

All matter except for that created in big accelerators is made of electrons, protons & neutrons
Of these 3 particles, two have charge, and all have “spin” (intrinsic magnetic moment that
produce); moreover, as they move they generate an extra magnetic field:

all matter is made of tiny charges and magnets
In fact charge and spin are in some sense more fundamental than mass: mass is not quantized,
varies depending on the reference frame (special relativity), and is the effect of an interaction
with a field (Higgs particle); on the contrary, charge and spin are quantized and invariant.
The spin is described classically as a magnetic dipole moment (a little magnet with a south pole
and a north pole right next to one another, topic 3). This is the magnetic version of an electric
dipole moment (topics 1&2), which is a configuration of opposite plus and minus charges right
next to one another. This configuration of charges (electric dipole) also exist in nature, not in
particles by themselves but in their agglomerates: the water molecule is an electric dipole.
The microscopic constituents of matter give rise to E-fields and B-fields (and are subject to
external E- and B- fields). The simplest description could be with the following equations:
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") drg, 1’ ()= 4re, ( r r3j B(F)= q B()= PP
E-field of (point)charge & electric dipole B-field of slow/y moving charge & magnetic dipole

plus the Lorentz force F =g(E+vxB) and the torques on the dipoles {F .

NOTE: Charges are depicted as points, dipoles (both electric and magnetic) are depicted as
arrows. So in the first three topics it will be all about points, arrows, spheres, cylinders... ©

Why do we settle for “less”?

= 1 77’ E.dc_i:Qinside/go
E(r)= — Vs ariz
4re, \r 2k i;E-d_é:O
OArea
N ﬂ N 77—}7' §B'd#:0
B(F):deT'J(FI)Xﬁ VS aVol
4 ¥ =r'] §B df wl
0

t pdrea f

1) Because these expressions cannot be generalized to time-varying fields, while these can;

In fact, the equations for the fluxes (Gauss law) are correct even for time-dependent fields

2) Because field equations (with fluxes and line integrals)

have a profound meaning (see next slide)

3) They simplify the solution of certain problems: -
3.1) high-symmetry charge distributions e
3.2) fields near interfaces (“boundary conditions”) 2  conducior

4) Helmholtz theorem states that a field that only depends on r (and not time) is completely
specified if both its curl and divergence are known. Hence we are not really settling for less!



Physical meaning of Gauss’s and Ampere’s law
for E & B (electro- & magneto-statics, fisica 2)

Closed swrface

4 '--H.-'%‘”\.H !/ '\’_“‘ e
[E- da = % means that E-field lines start at positive |
Vol & charges and end at negative charges Y ¥
(V-E=p/s,) Example: electric dipole 2> -

- 0

i#;B -dd =0 means that there exist no magnetic monopoles (no
Vol - positive and negative “charges” or poles exist that
(V'B =0) are source of B). B field lines never start nor end

Example: bar magnet >

&E -d? =0 means that E-field lines never draw a closed contour,
they never make a full circle around any point
OArea (VXE _ 0) y yp

“§ ) d_l; — ,Uo[ means that B-field lines draw closed contours

OArea around currents, they “curl” around currents

VxB=puJ
( Xb = U ) Example: current flowing in a ring >

Differential & integral laws & boundary conditions
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Differential & integral laws & boundary conditions
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Stokes’ integral theorem j(VxC) = §C df therefore §B dﬁ ol

OArea

Area 0Area

If a current is present at the boundary between 2 media:

[B-dt=B,dt,+B,dl, =(B,~B,)dl = :
= y,lda = u K \dﬁ\

whence B, x#, + B, xh, = u,K

Hence:
Differential form Integral form Boundary form
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Gauss’s integral theorem

dx /’C C Take a little volume of sides dx, dy, dz,
E‘ ( | / centered at position r=(x, y, z)
(XsY-d—y,Z) i I ¢ ("a}'-l-d_yaz)
z 2/ =7 N @ 2 We want to calculate the flux of the
r=yg |- ’ N vector field C=(C,, C,, C,) through
. | —  dy—— the volume’s boundary

Consider the flux through the two vertical facets (parallel to the xy plane). The flux through the
right facet is C (x, y + dy/2, z) dxdz; the flux through the left facet is —C (x, y — dy/2, z) dxdz .

The minus sign comes from the fact that the flux of a vector is by definition the outward flux. By
making a Taylor expansion to first order, we get that the total flux through both xz facets is:

dxdydz

dy dy 9C,(x,y,z) dy dC,(x,y,2) dy 9, (x ¥, Z)

aC,.(x,v, z) n ny(xjj.a z) n 8C.(x,y,z)
dx gy dz

/’*S
looking at the figure to the right, we see that the outward flux from Z/ZX
- V.
4

-
dxdydz =V . CdV

the total outward flux is then: d¢ = {

an inner elementary volume cancels out with the outward flux
from its neighbors. Whence we get Gauss’s theorem: Irelis
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Theoretical tools

The fundamental quantities in electromagnetism are fields (electric field, magnetic field, scalar
potential field, etc.), that is, scalar or vector functions of the position r (and, when we consider
time varying fields, also of time t). To describe these quantities, we will need few concepts and
tools from classical field theory, which we will introduce and use during the course:

- Rectangular (cartesian), cylindrical, and spherical spatial coordinates

- Gradient, divergence, curl, time derivative

- Dirac’s delta

- Gauss’s and Stokes integral theorems

- Boundary conditions

- Derivative rules for products (scalar & vector)
- integration by parts

» MACROSCOPIC DESCRIPTION
(average)
Connection with: circuit theory, electromagnetic waves,
geometric and wave optics (PEF1), statistical physics

Maxwell’s equations
(interms of €., W, , g, n)
and boundary conditions

Connection with: chemistry, quantum physics,

Atomic/solid state description:

» MICROSCOPIC DESCRIPTION » microscopic constituents, dipoles,

inter-particle forces; microscopic

solid state physics, physical electronics, photonics origin of values of €, 1., g, n
Finite variations: A NOTATION Coordinates:
Derivatives: d,9,,0,,V infinitesimals (with d or 6): -rectangular: (x.y,z)

vectors and vector fields:

Position: 7; distance d - surface: da, da = nda - unit vectors: £, 9, 2, 7
Normalﬂdirection ﬁi velocity v - volume: dt ; solid angle: dQ) (also f,,@, :9,,,,,)
Force: 7, torque: T _ scalars and scalar fields Mass: m ; Time: t
Force per unit charge or \10|Um91 /' Number/number density: n, N Temperature: T
Electric dipole moment p Dirac’s delta function: § Length: L, d
Magnetic dipole moment m Electric potential/voltage: Vor ¢ speed of light: ¢
Electric field £ . Field (or potential) energy: U Generic constant: k, x
Polarization field P - Total energy: E Surface: S, Area
(electric line dipole dﬁensity: ) (field) energy density: u Volume: Vol
Displacement figld D Charge: g, Q Capacitance: C
Magnetic field B R Proton/electron charge: +/— e Resistance: R
Magnetization field M Charge density: (free ;, bound ) Current: I ; Power: §
Auxiliary field H -volume p Conductivity: g
Vector potential 4 - surface o Mobility: z
Current densjty: (free ; bound ,) -line A Resistivity: 77

- volume Jq Susceptibility: y Polarisability: «

- surface K Dielectric permittivity: ¢ Inductance: L

-line 1 - Magnetic permeability: # Electromotance: ;*
Poynting vector: S ~ Magnetic scalar potential: = Magnetomotance: 77
Generic vector field: G Flux: @ Irradiance: 3 Reluctance: R
Constant vector (field) : C Complex refractive index: fi complex permittivity: &

- distance: d€ (dx, dy, ..), di =7 - sPherical: (r.0,¢)

- cylindrical: (z,s,H)



Summary of electrostatics (topic 1)

1 r

Coulomb’slaw F=——qgqg,— wi | 9 N2 /(2
py. 945 with o, ~9x10° Nm?/C
- __F - g F_q F
= — i i . E(r)= — = —
E(r) 1}1})13 p > Field of a point charge: £(r) iz, Az,
. Yog P
- Field of a set of point charges: E(F)=) ————& :
= dne, | F—F | Sl unit of g: Coulomb (C)
- Field of a continuous distribution of charges: (1C=1A-s;
N 1 ’7_;, e= 1.6 : 10_19 C)
dg = ; 2o E(r)= dr'—— r' i : 3
q=pdt [ = EO 4%0[ |r_r,|3p( ) Sl unit of p: C/m
: o ~(1 F—r' -1 _ _
By the Identltles:%:—v — | and f f, s=-V——~ ,weseethat E(#)=-VV(F)
r r |7 —=r'| | ¥ =7

_ 1 N i
with V(r)=4q — or: V(F)= 1 > L or: V(r)= 1 Jdﬂﬂ

TE, ¥ dre, o | ¥ =1, | 4rg, |7 =7
E(F)Z-VV(?) implies VXxE=-VxVV =0 Sl unit of V: Volt (V)
B . ~ ~ (1v=1J/C=11J/As)
It also implies: V(7) = —IE(r)-dE and U, (r)=qV(r) S| unit of £: V/m

Instead of having 2

N I = =
different types of E(F)= Z 9 f f" - E(F)= ! jdf' f _f ~p(F")
formulas, for the i1 4rmey |7 =1 | 4re, | F—=F'|
continuous and 1 X or: 1 7

— qk >\ ! p(r
. ’ V V)= V(I’) — dz- N —
discrete cases, we'd (7) Arze, ; 77 | 4re, J |7 —F'|

like to have only 1

For this purpose we would need the «continuous» charge density associated with a point
charge. This can be achieved by using Dirac’s delta function, writing formally:

Point charge g at 0 Point charge g at 7
_ 3/ 3, =
ppointcharge _q§ (I’) ,0=q5 (l"—}’i)

Dirac’s delta

The Dirac’s delta function is zero everywhere except at one point, where it has an infinite value:
in fact for a point charge we must have g= Idrp(?) = p(0)dr wheredzr ~0

The Dirac’s delta is not a conventional function, but it can be defined rigorously as
«distribution», that is, as an integrand, using the following definition (f is any function or field):

Jaz O @) =10) e [dr ()= [dr 8*(-F)=1

(notice that §°(7) =8> (-F) )



Dirac’s delta & Gauss’s law

The Dirac’s delta has several interesting properties. = 7 ~
The most important for our purposes is the following: | —5 | =4mo(r)

Proof: J‘(ﬁéjdz_zj‘é j_ r2dQ = IdQ 4 = j47z5(r)dr
<7

r T Vol

Gauss’s integral theorem

Since both the initial and final integral yield the same result, they must be equal, which proves

Vol

the above equality. Note that since % _ _@l , we also have that _y2 1 = 4757 (F)
r

r r
Proof of Gauss’s law :

P F=F) o E:jdfp(?)v@

dre, |7 7'

E(F) = j dr

=> ﬁ-é(f)z—ﬂdr'p( NS(F 7'

This entails, in integral form: &E da = IV Edrt = _IP(F)dT _ Qoenctosed.
g

Vol 0 Vol 0

- _ _ 7 .
E(F)=-VV(F) and V E(I”) = p; ) together imply: V7V = L Poisson’s law
0 &

Graphical summary of electrostatics

SUPERPOSITION

ENERGY & - FORCE

U,(r)=qV(r) F, = qE(7)
s 94 1 (H)p(r’) A

v 2;4ﬂ50|77i—;7j| U=—H4’Zg |f_ ddt' = jp(r)V(r)dr

For a continuous distribution =
NOTE: §°(#) cannot be used here



Solving simple electrostatics problems

if the charge density is given:

1) For high symmetry, use GAUSS’s LAW : V- E P
S &
Gaussian surfaces -~ AN . d— L
for 3 symmetries Pem 17 | 1
y ' / ””””” "" h !
.‘ f f;—..“____,,"‘l ! ]
\ ’ § 7 |/‘__‘,__,_ Sl |
// k ,,,,,, 4 \“Mm’ M-’_’J
g R
spherical planar
cylindrical

2) For low symmetry, INTEGRATE directly, either:

B P 1 (7"
E(F)= dr’'— o(r") V(F)= dr’
Are, I | ’ or ") Are, '[ |7 —F'|

F—r|

3) For sum of two or more simple charge distributions = use SUPERPOSITION PRINCIPLE

If the potential of conductors is given: (possibly with an external field or charges)
- For high symmetry :
option A) solve LAPLACE’s EQUATION directly in region between conductors: V¥ =0
option B) guess the direction of E, apply gauss’s law and use the line integral of E to find
the relationship between the charge density and the potential (e.g. capacitance)

- For other cases, option C) try with IMAGE CHARGES (see later) - HOMEWORK

The electric dipole

Consider two equal and opposite charges +gq and —q

placed a short distance d away from one another.

The field lines look as in the figure. We define the
P electric dipole p of this set of charges as the vector :

]_j = q d , Where d goes from —q to +q

B B [p]=C-m[SI]
L g §+: i 7 :;+§ [p]=e- A [atomic]
4 — . - A
o f__——F 3 J [p]=D (Debye); 1D =0.2082 eA
qy ' —47F=F — F =F-= (unit used in (bio)chemistry)
_‘ﬂq 2 + 2
The total potential of the 2 charges (r, and r_from figure) is: V' (¥) = g (1_1
dre,\r, 1
1 1 1 ~ 1 1 1

Since:%:\/ = = - — = — _
r T i i 2 I L Y 2
I e O I
2 2 2 4 4 ro 4r




The point dipole: Vand E

The result in the previous slide is correct, but we will use a simpler expression based on the

Taylor expansion of both terms of V. Using the expression (1+g)*% ~ 1—15 ,valid fore << 1,
2

we find: ~ Q N N
B q 17-d 14 1p-d 1gd° g r-d qd-r
V)= + > 1= h=—= -/ ||= = 5
dre,r 2 r 4r 2 r /2/ 4r dre,r v 4re,r

: = : p-7 p-7 . L .
Since p=gqd ,we have: V(F)= P 5= pr ;| Thisis called “point-dipole” potential
dre,r- Ame,r

yo_ Pt pcoso
If p is parallel to the z axis, then, in spherical coordinates: g$gfe 47r80r2 472'80r2

The point-dipole potential represents the (approximate) potential of a very small dipole, or
better the potential at distances r >> s. From the point-dipole
potential we get the corresponding point-dipole field by
taking the gradient of V and changing its sign:

- p-F=(1 1 = -
E=-VV=— V(—)— ~V(p-r)=

dre, \r’) dmeg’ )
(—3)]"_4;’: (éx)ayaéz)(px'x + pyy + pzZ) =
= (px’pyﬁpz)
- 3p-r r P - P
= E(F) point = — - If pis parallel to z, then E , = 3cos@r—z

Real dipoles: permanent vs induced

Types of real electric dipoles:

Permanent dipoles (p is fixed)

1) Permanent dipoles: polar molecules in which the / l-i\’ o

center of positive charge does not coincide with that aillin!

of negative charge (CO, H,0, Na*Cl, ...) ;u,-f l ha%—— r A

\H‘ & ki p\“

(monoatomic molecules (noble gases: He, Ne, Ar, ...),
and symmetric molecules such as H,, N,, O,, ..., CO,,

methane CH,, benzene C.H,, etc., do NOT possess a @
permanent electric dipole moment. Compare CO, ® o
with H,0: molecular structure, not formula, counts!) p = 0 cl N y H
C=C
H”™ " N¢l
2) Induced dipoles: apolar atoms and molecules Induced dipole (p depends on E)

under and applied field become «polarized», that is,
the center of positive charge (nucleus for an atom)
moves away from the field and the center of negative
charge (center of the electron cloud for an atom)
moves towards the field: 1‘9’ = aF

ﬁZOKE E

__________________



Apolar atom/molecule in an external E

- the electronic cloud is displaced from nucleus (induced polarization)

The net force on the nucleus is the sum of the force due to Ao With N s
the external field and the force due to the electron cloud:
at equilibriumE_ = E_, =Y

Assuming that the cloud is not deformed by the applied N
field, the nucleus is at a distance d from the center of the g
cloud and the electronic force is calculated with Gauss’ law:
4 3
pel 77%1 = 1 . peld _ o
—E, (s)4rd? = Qo (d) _ 713 = E, (d)=- 3 = E,
&, & €
-~ 3¢, = Vol 3glVol - - . a =3¢gVol
—d=_>bf TO0L_ %70l ~(__ )_ ith:
Yo, Vol Ne o = p\=—Ned)=ak with Vol = atomic volume

Note: here N is really the number of valence (outermost) e, since they are more easily polarized
But one should really do a quantum mechanical calculation ! In quantum mechanics the dipole
moment is the operator —erand p = <1// | —er | z//> . For the hydrogen atom under an applied
~ 9K
field, for example: p = %(4”50“2)5'0]‘ ifi E)E; gj ig ?ﬁ ;2
o Solariabil o Ar | 20 | Ny | 22| CcO, | 33
& vl olarizability a/g, (in A3) for kr 131 | CO |24 ]| ccu, | 127
Lo some atoms and molecules xe |51

Polar atom/molecule in an external E

The permanent dipole moment of the atom/molecule orients parallel to the applied field

E +qFE,, Eot = +quxt — quxt =0  (if E,is uniform!)
ext
g - - R ' for a force par (F,, = 0)
- Ly =+qdxE,, =PpXE,,  goesnot depend on the
—qk,, reference; we choose —q )

Energy of a permanent dipole in an applied field:

U, 0 +qV (F+d)—qV,,(F) = +q|(V., (P + YV, (F)-d |- gV, (F) ~ qd -V V., =—p-E,,
permanent o —
: ermanen - _p ’ ex
[?ointdipolte t

If the applied field E, is not uniform but depends e [_. = ]
on position, E = E(r), the net force is non-zero: F(I’) =-VU =V P E(r)

Permanent dipole moment p of some molecules (in Debyes and eA); 1D =0.2082 eA

molcule €O | 0 | N, | HE_|HEl | NaCl | CHoCl| CHcl | CHEly| G-

p (D) 0.122 185 142 175 1.04 961 187 1.56 1.15 2.06
p(eA) 0.025 0.4 03 036 022 2 0.4 0.32 0.24 043

Large polymers/biomolecules = hundreds of Debyes! Q: how much is p for CH,? And for CCl,?
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| q | 1 1
= Vi = = Zf]k+%—zzqk’”'7k+r—3;()+----

dre, T \r—r| 4neyr G o T

- 4 1 1
— tot(r)— {quJ (qurk -rLz+ ..... r—3+r—4+}

k
multipole expansion for V

= Oror = Pror .
(integer powers of 1/r)

What happens if we choose another point as origin?
¢ for an overall neutral system:

— =Yg =Y ¢ +00") = —
/H N p Zk:‘hk Zk:%{(k ) V~L
/ ) 24 [Z )%" 50,000 < dmr
& =) 4| 2.4 =p+ .
e R G e p is ABSOLUTE

p: key electric parameter neutral molecules
the field produced by the molecule (in a condensed-matter context)

]; determines < the torque on the molecule in an applied field

the orientational energy of the molecule in an applied field

In a homonuclear molecule, p =0 . Examples: He, Ar, H,, O,, C,,

In centrosymmetric molecules, p =0 . Examples: CH,, CO,, benzene, C,,H,,

In a heteronuclear molecule (e.g. a diatomic heteronuclear molecule), p is largest when the
difference between the electron affinity of the two elements is largest. For example, in halogens

the electron affinity diminishes with atomic number, since
the extra electron is further and further away from the mmmm

nucleus; as a result, p for e.g. hydrogen halides decreases: | p.1039¢:m | 6.7

In larger organic molecules, as well as in polymers, DNA, proteins, p can be very roughly
estimated as the vector sum of the dipole moment of all polar side groups:

srwrions cn Lo wi [no,len [ [co Tea ler oo

p-103°C-m 133 527 553 132 203 131 373 6.83

Ex.: p of alcohols (Debyes): methanol 1.70 ; ethanol 1.69 ; 1-propanol 1.68; isopropanol 1.66
BUT, it doesn’t work so well for conjugated molecules: phenol 1.22 D (1 D =~ 3.336 1030 C:m)



(s : radial coordinate)
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The line dipole
A . _ A
' V(S):_Zirgo

2
e
line CICICICICICICICIC I E(s)-27z'sh:ﬂ:>[?(§):
charge: «— ph—> & TEYS
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, We define: = Ad  (“dipole density”)
2
ln[S‘

J < since Log(a?) = 2Log(a)
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Line dipole:

Pl EEEEEE
ﬂlns++ﬂlns__ A lns—‘ A
2re, 2ne, 2ms, \s, ) 4ng,

s o d d?
+ . /1 S +2S'5+T 2{ 5

lWe get V;OI(R)=47Z}90 In Sz_zg-é_'_diz 24”80 In o

2 4
v, = A [ln(l+g)—1n(1+g')]z A (e—&")
4re, 4re,
_A8-d _Ad-s y -5 -8
dpote 276,87 271€,S

V&=V E)+V_ (5 )=-

SR ESWIN N R
+
“)
Il
IC’Jl

With
dipole

Using the Taylor expansion: In(l+&)=&=
A |8d d° s-d d’
+ T TS| = - 2
4s 2reys  2mEys
(gradient calculated in
cylindrical coordinates)

dipole

S 4s5° S
1 (280'?5—83):—7%6

E. . =
rieg 27e, 4 s

The line-dipole field is then:
dipole S
£-8 cos@
_ P = & and Eline =
272.(90S dipole 27[(90S

Summary

v | E
1/r ~1/r?
~1/r3

= Vi =
' Are,

L (2cos05-z)

2

If 0 = X ) th : Vme -
p p en ilipole 27[(90S

Point charge
Point dipole cos/r?
Line charge Ln(s) ~1/s
Line dipole cosO/s ~1/s2
z constant
0

Plane charge
constant

Plane dipole
Question for the class: why is the electrostatic field of a plane dipole zero?

What about volume dipoles? = see next slide: a “sphere dipole”
- see TOPIC 2 !

Multipole expansion for a DELIMITED charge distribution:

Qtot ptot
1 4) 1(5 )Rl 1
r)r
yotlad) A2 an) T oy Loy,
r 4re, r r

V(r
r 4re,



Sphere dipole (plasma model for the point dipole)

. f‘// 1\\\\ 4 3
uniformly L —r 7
charged ! i E(am?® = 3 E(r)= 2
sphere €y 3&,

point dipole
field inside plasma:

B -F 1B :&{_&J:L@_F_):_ﬁ

3&, 3&, 3g, 3g,

o

field outside plasma = point dipole field
(use superposition principle to see why)

Example: metal sphere in applied uniform field

Inside the conducting sphere, we have Etot = Ee Eresponse =0
» -
_Eﬁ _bresponse == #ext = _E 0 - _'response = _3ﬁ
&y
Lz_;k_ :
E - E ——ﬁ:m 3g,E,. = p=pVold =3¢, Vol E
response ext 380 0~ ext pP=p - 0 ext
Plasma model of the line dipole
"3
uniformly X I_.' fierin 52 h . 5
charged "f'.' - 1:]:: ] E(s)2msh = p = E(5) :2'0_
cylinder \/ . 0 0
. . _+-'r LA A ol =} + 1-..\. £h_._*__"_ Y -';_ Lﬁ""*‘\i
line dipole g | == A== 1_"\. :
field inside plasma > By, = E.G)+E ()= poepiao P
I€ld InSlde plasma o T S p26‘0 p280 2¢, (we used d+5s =5_)

field outside plasma 2 line dipole field (use superposition principle to see why)

Example: metal wire in applied uniform field i A g
7 N | 3
L. . . pd Faes g
— — — i fr g
Etot - Eext + resp Eext - =0 = [ ¥RF 7
280 l"' Bk e .-ai:':
~ od Ad 1) - =
Eext = 2 = 2 A = 2 A - Soipducgd = 280Areacros§ Eext
&y EgArea EgArea line dipole section
section section
2 A A
here we used the fact that ;= 0 = pVol = pma*h = p=—=
7m2 Area

cross
section

We will solve again the last 2 examples in a more formal way using the method of image charges



Electrostatic properties of conductors

Fundamental electrostatic property of good conductors (for examlpe metals):
In a conductor with no flow of current (in “electrostatic equilibrium”):
Einside =0
This is so because if E # 0, free charges would move, accelerated by the field, so there

would not be equilibrium. Free charges accumulate in such a way as to make E =0

inside
Notice that E; ;4. = 0 only in electrostatics; if there is a current running through the

conductor, then E is different from zero (it is in fact given by Ohm’s law, see topic 4)

Consequences of fundamental property:

- applying Gauss’s law 2 Pjnside = 0:net charge = 0 inside a conductor ; the charge

resides entirely on the surface (where the surface charge density & # 0, in general)

- integrating E > V' = const: surface & volume of a conductor are equipotential; the
surface is an equipotential surface; no E-field lines start at end on same conductor

- (boundary condition) = Etangential =0 just outside conductor. Hence just
outside the conductor, E is normal to the surface

- (boundary condition). The field just outside a conductor is proportional to the local
surface charge density and orthogonal to the surface:

—> if r belongs to the conductor’s surface, En(r) = c(r)/ao

What does E, ..;. = Pinsige = O really mean?

A metal is actually made of ions and electrons; how can the charge density and the
electric field be zero near a point-like charge like an atomic nucleus or an electron??
When we say E =0 or p =0, we mean an average, “macroscopic” quantities, namely
the field or charge densities AVERAGED over distances that are large compared to
atomic ones (~ 1A). We denote the microscopic volume charge density by n and the
microscopic (full-detail) field created by it as e. They fulfill: ¥ . ¢ = nle, VY Xe= 0

In general, the spatial average of a function F(r) or F(r, t) can be defined as:

4R’

(F(x, 1)) = j d’x" f(x')F(x = x". 1) | where the sampling 3 F <R
f(x) = {
0’ r>R

function f(r) is a function that is non-zero in a neighborhood of

r =0, and normalized to 1 over all space. Possible examples are: ) = (TR?) Ve

The macroscopic charge densities and field are defined as: p(F)= <77(7)> LE(F)= <€(7)>

It can be shown that applying the averaging on the microscopic field equations, they
remain valid for the average fields, so thatindeed V-E=p/g, and VxE=0

Question for the class: apart from metals, which other systems fulfill E; 4.=0?
In other words, which systems have charges that are free to move around?

(hint: think about the 3 or 4 possible states of matter that you know of..)



Boundary conditions with conductors

What we did in the last lines of the previous slide is apply so-called boundary conditions, which
are general electrostatic relations, to the case of an interface between a conductor & vacuum:

VxE=0 = V.E=FL =

g
E.dl,+E.dl,=(E,—E)dl|=0 L Y
2% 2 171 2 tl‘ ‘ CD(E):El-ﬁlA+E2-ﬁ2A=g=G—A
R & &
i
R
R
e 3

E

inside ~

=0 In electrostatics, £,

t,inside ~

In electrostatics, F :E

t1

-

n=E

just outside

=0 hence: E = (7/80

just outside )

hence: Et

,just outside

—

= 0= 80Ejust outside 17 = _8OVV n

just outside

Capacitance and electrostatic energy

Capacitance

The total surface charge on a single conductor far from other charges and conductors turns out
to be directly proportional to the voltage we apply to it (we will show this in general later). It is
then useful to define the capacitance of a conductor, as

C=Q/V

Here Q is the total surface charge ON THE CONDUCTOR.
If they carry equal and opposite charges, we can also define a capacitance for a set of two
conductors (capacitor)

Sl unit of capacitance : C/V = F (Farad)

Energy stored on a single conductor:

1 1
U= ; j o(FW (F)da , V(F)=const=V =U=_V J o(7F)da = EVQ

0 1 1 . O
C== = U=—Q0V=—CV’>==—
v , 9V =5 2C



Laplace’s law & Uniqueness theorem

If we have a set of conductors and for each of them we specify the potential V or the charge
= 2
density o =¢&,E, =—¢£,VV -7 , then the solution to Laplace’s equation V¥ =0 inthe

region between conductors is unique.
Proof:

Call S the (grey) area outside the conductors, and &S its boundary. Let’s suppose that there are

two solutions V(7)) and V(7). Consider the field C definedas C= (VB -V, )ﬁ(VB — VA)

Applying Gauss’s theorem to ' we get Idr V-C= §5-ﬁda =0
S oS

The last equality follows from the fact that at the boundary 85

itiseither ) =y or o,=0,= (VVA)-ﬁ = (VVB ¥/

In both cases the flux of C through 6S is zero
The divergence of ( is equal to (product rule) :

v-C=V -[(VB—VA)?(VB—n)]:ﬁ(VB—VAW(VB—VA)+(VB_VA)€.6(VB_VA):

- ‘ﬁ(VB _ VA)F + (VB -V, )V2(VB _ VA): W(VB _ VAY (the last step follows since V', and V;
are solutions to Laplace’s equation)

o - — 2
Hence we find IdT v-C :de ‘V(VB _VAX =0 . Since the integrand is everywhere > 0, the

S S = -
integral is zero only if at all points one has V(VB — VA): 0. But this implies that £, = £, that
is, the two solutions are in fact the same.

Application: capacitance of a conductor

{":Ja If a conductor is charged or a voltage is applied to it, it will exhibit a
|
i !

5 surface charge density and total surface charge given by
e
|

| ¥ o, = EOE (surface)-n= Q, = I - 0,da
L g IE.-;_- surface

|!
Suppose that the potential of the conductor is v,, and that there is no other charge/conductor
nearby. The potential infinitely far will be zero. The potential inside is constant and the field
inside is zero. The potential outside V(r) is the solution to Laplace’s equation V?/ =0 with the
above-mentioned boundary conditions. Suppose we change the potential of the conductor to v,
The potential everywhere V’(r) must be solution to Laplace’s equation and satisfy the new
boundary condition. If we knew V(r) before, it’s easy to guess a new potential V’(r) that does the
job: it is simply V() :ﬁV(f)

Vo v
Since the solution is unique, this must be it. The new field willbe E'(7) ="' E(#7) and the
Vo
. . PN Vv . Vv
corresponding surface charge density and total charge: o'(7) =1 0o,(F) = O, =-1Q,
Vo Vo
If instead of requiring the new voltage to be v, we specify the new total charge to be Q,, we
already have a solution: it is the one we just found, with the same voltage v,
We see therefore that the form (dependence on r) of the surface charge distribution is unique
for the given conductor, it only rescales with the total charge. We see also that Q is linearly
proportional to v, that is, that Q/v is a constant C. This constant is called capacitance



Application 2: capacitance of 2 conductors

Suppose we take 2 conductors, separated from everything else, and charge them with equal but
opposite charges +Q and —Q. The potentials of the two conductors will be V, and Vg,
respectively (with V, > V;). Provided that the absolute value | Q| Q of the charge is the same,
we define the capacitance of the system as: G

o _ o N
AV V=V,

i@

Here AV =V, =V, >0 is the potential difference between the two conductors

The condition that the total charge on the two conductors is the same (apart from the sign) is
easy to fulfill. For example, if a potential difference is established between two initially
uncharged conductors by connecting them to opposite electrodes of a battery, then what the
battery does is transport electrons from one conductor to the other. In other words, the two
conductors will have at the end of the charging process equal but opposite charges.

Poisson’s equation with the appropriate boundary conditions, which fixes the value of the
surface charge density o at all points on the surface of the conductor. If we now rescale the
function o by a constant factor, the value of | Q | and of the potential will scale according to the
same factor - the capacitance C of a system of two conductors having equal and opposite
charge is really a constant, and we can treat it as such when solving electrostatic problems!

Capacitance: exact calculation vs estimate

- Calculation of C for the a single conducting slab, sphere or cylinder
- Calculation of C for the planar, spherical and cylindrical capacitors
Two possible approaches in both cases: guess the symmetry of E ; else, solve Laplace’s equation

(= exercise classes)

- Approximate estimate: example: thin disk of radius b

L ey
L M : A = constant (%)
.::’
- e g
Tw '-\4.___;:::-' o = constant (il)
"EX Ve et
(— Ve = [ = [ ade = Le
. R center -
; : dre,b  4re,b Aze,b
o4 .'_I
: I‘/_ A th :/127Zb:>C:&:47Z’80b
4 V.
center > = C ~ 372-80[)
b
27szR o
((i \‘_. J g center '[ 4
y Arne R g,

ﬂnﬁﬁ 0=omb* = C=2rs,h )



Image charge method for conductors

If we have charges, dipoles, etc. outside a conductor, these external charges create, by
themselves, a potential that is not uniform in the space occupied by the conductor. This
potential, or field, induces a peculiar charge density on the surface of the conductor which
together with the external charges generates a total potential that is constant (say, equal to V)
over the whole volume of the conductor, and that satisfies Laplace’s equation everywhere
outside it except at the points where the external charges are located. The problem is to find
the surface charge distribution that does the job.

The image charge method is based on the uniqueness theorem, which states that there is a
unique solution to Laplace’s equation with complete boundary conditions.

The image charge method for conductors works this way: starting from the non-uniform
potential created by external charges, we try to guess a fictitious, simple set of charges or
dipoles that, if placed at specific position inside the conductor, render the surface of the
conductor an equipotential surface, of given potential V. If we succeed to do so, we’re almost
done: the set of real external charges plus fictitious (image) charges together create a potential
that fulfills the following requirements: it is equal to V,, on the conductor surface, and zero at
infinity; it is a solution of Laplace’s equation everywhere outside the metal except at the points
where the real external charges are located. From the uniqueness theorem, we then know that
this potential is the (unique) solution to the initial problem.

Since we now know the potential everywhere outside the conductor, we can calculate the field
everywhere outside; we can then use the boundary condition on the normal component of E
to find the surface charge density induced on the conductor.

Simple example of image charge 1

A point charge q lies a distance z, above a semi-infinite (grounded) metal half-space. It induces a
charge density on the planar surface of the metal. What is V in the region above the plane?
Answer: the induced surface charge must compensate the effect of the external charge: the
metal surface should be equipotential, but due to charge g it is not. Is there a simple way that
we can make the surface potential to be everywhere zero?

Yes: if we put a charge —q a distance —z, below the plane, then the
surface is halfway between two equal and opposite charges, and it is
straightforward to see that on such midplane V;5;=0:

q -9
Vigr =V, +V_ = + =0 = =
S D AT N = Vior =0 forz=0

Z

real charge

=0  The potential V;,, =V, +V_ satisfies all the conditions of the

unigueness theorem in the region outside the metal:

- Outside the metal, Vy, satisfies Laplace’s equation V¥V, =0
everywhere except at the position of the external charge;

Ty g - Vypp =0 at the metal surface;

image charge - V,op = 0 ata pointinfinitely far from the external charge.

Since the solution for V is unique, the potential V;,, =V, +V_ must be the true potential
outside the metal for this electrostatic problem. Of course, we cannot put a free charge at rest in
the middle of a conductor: the negative charge at (0,0,—d) is a fictitious IMAGE charge, a useful
tool to determine V and E outside the metal. These fields (V, E) are really produced by the
external charge and by the induced surface charge on the conductor, which is distributed in
such a way as to give, outside the metal, the same field of a (fictitious) point charge!



Simple example of image charge 11

A
real charge

4 \q
N~

image charge
The image charge is just a useful theoretical tool: there can be no charge inside a conductor in
electrostatics. What is then the real induced surface density on the plane? To calculate it, first
notice that the total electric field at the conductor’s surface must be normal to it. Since such
field can be obtained as the sum of the fields of two point charges, this is easily verified. In fact,
we see that such field is simply E, =2(E,,,),, where (E.,,), is the vertical component of the field
due to the external charge at the metal surface.
Since at a metal surface c = ¢, E,, we then get:

o(r)=r— 1
271(s” +20)"?
What is the force on the external charge? Since the response field of the conductor is the same
as that of a charge —q a distance —z, below the plane, the force on the external charge i |s just
the f hich Id produce th h I I »
e force which would produce the image charge (!!) : F— (0,0,2,) = - q L

2
response 1 67?,'80 ZO

Question for the class: how much is the force on the conductor?

Other examples of image charges

Point dipole outside a planar conductor

Z
Z()_'-> p:p()j

Zo =T P =Dy .ll\
0 = conductor 4

[ A
conductor ¥ B o i

Question 1: For a general orientation of the dipole, how does the image dipole look like? Is
there a net force and a net torque on the dipole? In there an equilibrium orientation?
Question2: how are the image charges for a general charge distribution outside a metal plane?

-

Z 2

Other example: point charge
near an L-shaped conductor °ig —— = i ®+g

it ,,

conductor

conductor
+q® ®—g



Conducting sphere in external E-field

Induced charge density on a neutral conducting sphere in uniform external field E,=E; z. The
external potential due to E, is V,,, = — E, z. The zero of z is arbitrary; we take z = 0 in the sphere’s
center so that on the sphere s surface at a radius R, we have V —E,z=—E,R,cosO . This s

ext
clearly not uniform on the conductor’s surface; we need to find a set of image charges in the

region occupied by the sphere such that the total potential V;;; = V.. + V yace cHarae 1S COnstant

ext
and = 0 on the sphere surface. It’s easy if we remember that the potential of a (image) point
1 p-¥r pcost (

—~ (pis parallel to z). The total potential is

dipole p centered in the originis 7, = 1 =
mE, T TE

pcosé
Vior(r=Ry) =~ER, 0089+4ﬂ x which is zero if  p,,,.p = 47, R E, ( 3eVol e E )
- P . O
The induced charge density is found from the boundary condition E;oy -1 =E;;(r =Ry)-7 = 5_
0
Since the total field is the sum of the external field and the field of the image dipole, we get:
o= gO(EO 7+ Eﬁ(r =R,)" ﬁ): &E,cos0+2¢,E,cos0 =3¢g,E,cos0 =0,cos0 ,that is:
. i e N
o(r=a)=o0,cos0 with o, =3gE, SR, W -
—— >
- 5 . Eonl
— . A E
e i |~ * > =
— —— >\~ i
FE 7 ST -
0 Prouice ol e Tea

= o
Question for the class: how much is the force on the sphere? How much is the torque?

Field of a spherical surface charge o« cosf

We saw in the previous slide that the induced charge density is g = o, cos @ with o, = 3gOE
Such a distribution must create a constant field equal to E, inside the sphere, so that E,; inside:

— — — — — — O' A .
Eror =Ey+ Eppor =0= Eppor = E, =—Ey=— 3 : Ey =uniform
)
This result is very important and we will use it in several occasions (it is also on the formula list):
A spherical surface charge density proportional to cos(0) produces a constant field inside the
sphere and a dipolar field outside. If 5 = o, COS @ , then

=F. =Vol

sphere

E . =— E

inside

with p =3¢,Vol

sphere mside

outside p ?

Exercise class: what happens if the sphere is at a potential V # 0 or carries Q # 0?



Conducting cylinder in external E-field

Induced charge density on an infinite neutral conducting cylinder (wire) of radius R, in uniform
orthogonal external field E, (the cylinder axis is the z axis and the field is parallel to x). The
external potential on the cylinder surface is V, = — E, x. We take x = 0 on the cylinder axis so that
V,=—E,x=—E, R, cos@ . Note that now the angle @is in cylindrical coordinates (and not
spherical coordinates as before). The suitable image charge is now a line dipole @ extending on
the cylinder’s axis (parallel to z). The resulting total potential on the cylinder surface is

Vior(s = Ry) =—E R, cos 0 + peosf , which is zero if £ yuee = 276, R, E, (: 28 Area,,,, on
271'80R0 section
, o . Az . O
The induced charge density is found from the boundary condition Epp 7= Eppp(s=Ry) 5 = .
0

We get in this case: o = 80(E0 -§+E@(S = RO)-§): 2¢,E,cos0 =0, cosb

Just as for the sphere case, this induced surface charge density must create a field equal and
opposite to E, in the whole region occupied by the cylinder. Hence we find an important result
for the field of a cylindrical surface charge proportional to cos8 (in cylindrical coordinates):

A cylindrical surface charge density proportional to cos(0) generates a constant field inside
the cylinder and a line-dipole field outside. If 5 = o, COS @ , then

_ %
inside ~ 280
Eoutside = ESZ) > Wlth (@ - ngAreacross Einside = Areacross O-O
section section

E-field of special charge distributions

-0, +o. 2planes with uniform & *+q Point dipole ]3 = qc_z;
£ + opposite charge density, distanced > 0
+
— separated by d << Area d A\~ -
+ . —q - 3(p . r)r o
- _ O, ~ E . =
o between planes , £ = " x Binole Are,r’
< >+ - €
/d / outside, £'=0 CICICICICICICICIC R Line dipole
Td  H=ad
spherical surface charge densities: OCOOOOOOO* L edD0
O =004 inside: E=0 & V=ct=V, i _2psf-p
* ¥ Z’Zjeole 272'80S2

+ - + | outside: point-charge field

O =0,C0S 0 cylindrical surface charge

N density: o =0, cosd

0 = angle betweenxandr  _ @ = angle between x and s

- O ~ - i - O. ~
inside : =——0x - inside: £E=——Cx
3g, 2¢,

outside: point-dipole field outside: line-dipole field



Dielectrics and polarized media (TOPIC 2)

When dealing with insulators (dielectrics), one usually wishes to calculate: AN
1) the field produced by a polarized dielectric J".,T 4
2) the effect of an applied field on a dielectric = il

a '
Basic idea: a dielectric may be represented by a collection of point dipoles: “~_ _« 4 T

A dielectric only carries a net charge if YOU charge it (by rubbing, ion bombardment etc. )

Even approximating the atomic distributions as point dipoles, it’s impossible to take into account
all of them (there are of the order of N, = 1023 atoms/cm3 cube in a liquid/solid sample), let
alone their mutual interactions. More than individual dipoles, we should consider the average
dipole moment of a solid. We thus define the POLARIZATION of the material or medium as:

_ 1
P =dipole moment per unit volume = —— Z D, Polarization field

Similarly, instead of calculating the local electric field on atomic scale, we should calculate an
average, macroscopic electric field due to all the dipoles. This can be done with the concept of
bound charge. Take for example a rectangle of atoms that have dipole moment parallel to two of

the rectangle’s sides:
g I As you can see in the figure, the end of a dipole (+

charge) is close to the start of another dipole (— charge)
TN - atall points inside the rectangle, so that the average

_ field of due to both charges is zero. This is not true at

- ! v . |"  thesurface, where there are “uncompensated”
el — charges. These charges, called BOUND CHARGES,

' produce the E-field inside and outside the sample

Fundamental theorem of polarized media

The procedure suggested in the previous slide is possible in general. As mentioned, a polarized
material may be considered as a collection of point dipoles, and whose volume density is the
polarization field: . 1 dp(7)

ON
P=—> p. = P(7 i : 2
5 ;P, (7)) = s Sl units of P: C/m

T“

Each elementary volume d7z of the material has thus an elementary dipole moment dp = Pﬂ’f
What is the E-field produced by a polarized object? For a point dipole we have V()= L pr

Hence for a continuous collection of dipoles each at position 7 : 4re, 1’
- P r 1 —~(1 r
V(r )—7 J' dr (r)- ( ) J' dz-P(r) vV (since V[_j:_T)
Are, Vol P —r‘ 472'80 Vol ‘ r‘ v r

Integrating by parts V(f G)= f-VG+G-Vf and using the divergence theorem:

1 - ( P
nN—__ — V-
V(r 47[80 vol-l[me|: (‘F' - F‘ J

~, 1 o 1
The last equality may be written as: V(") = j; — b —da+ I Py dt
dre, S |r —r| 4re,

(P ldr = §#,P#-ﬁda—1 j ,lq(Vﬁ)dr
dre, ., r —r‘ dre,

surface

Here we have defined o, = P-# and Py = -V.P (surface/volume “bound charge density”)

the electrostatic potential and field produced by a polarized medium
of polarization P is the same as that produced by a volume charge
density 0, = Vv - P plus a surface charge density o, —P.h



Physical meaning of bound charges

What is this “bound charge”, and what is the difference with the charge in a conductor? In an
atom one distinguishes between core electrons and valence electrons (those in the outer shell);
when atoms form a solid, they share their valence electrons: in some solids (“metals”) these
electrons can move freely from one atom to the next; in others (“dielectrics” or “insulators”)
valence electrons are tightly bound to a single atom or bind together two atoms. In the first
case, the valence electrons are free charges, in the sense that they can move anywhere; in the
second, they are bound charges, in the sense that they cannot be separated from the atom or
pair of atoms they are linked to. Bound charges can only move slightly with respect to the
nuclear charge they are bound to in an applied field; this is what we call “induced polarization”

Notice that even in an insulator there can be free charges, for example if it has been electrized:
in fact, an excess or lack of one electron on a site is a free charge that can move about, if all
other sites are neutral (think about what happens in a semiconductor). If there are no free

charges, but only bound charges inside dipoles, then the material carries no net charge, that is,
it is neutral:

P is a macroscopic field

The polarization field P is an average, “macroscopic” field. We may see it by rewriting it as:
SN

N
_ Z . ON Z - ON (The Sl units of P are the same as those of a
P — 1 pl — 1 pl — A\ — A

- St - St ON - St <p> - n<p> surface charge density, namely [P]=C m™2)

We see that P is equal to the number density of atoms 7 = @ times the average electric
N or
iﬁi : /. D

dipole moment per atom, given by <13> = .Since p, =—V-P and o, = P-h , we

see that the bound charge densities 0, and O, are average, macroscopic charge densities

=< ' It is precisely because we are considering
— —fﬁ- —HI - — averages that we can say, for example in the
— >00>0 - - case of uniform polarization, that the bound
_ '1 :x’ o charge at the end of a dipole (+ charge) cancels
\“x,,,,/ ' out exactly the bound charge at the start of

the dipole next to it (— charge).




“physical” proof of the fundamental theorem

Consider a small area da at the boundary or inside a dielectric. When the dielectric becomes
polarized, positive and negative charges are separated by /¢ and some charge dQ,,.., Will cross
da. The atoms that cross da are those that lie at a distance /2 of da, where (. =n- / isthe
component of ¢ normal to da. dQ is the number of atoms in the volume dz = (. da,
multiplied by the charge g, that is: ;

dQ, ...« =qn, !, da (n, is the atomic density)

across

Since gn,l, isthe normal component
of the polarization field, we get:

anCI"OSS - Pn da

If da is a part of the surface of the dielectric, dQ,,,. Will correspond to a surface bound charge.

The surface bound charge density is % —P =h-P= ab(this proves part of the theorem)
da 8

If instead da is part of the closed frontier S of a volume dV, then O, .oss = §Pnda = J.ﬁ-f’dr

Since charge is conserved, the charge crossing S is the charge leaving V:

O.oross =0 iide = —j pdr where p, is the volume bound charge density

Comparing the last two equations for Q we see that p, = V.P

across

Fundamental theorem:simple applications

Uniformly polarized cylinder T*ﬁx _ e N
LT e )_,1!.2-___'5_:_‘?_‘(;]____
| et e i Sz A g, B ’
-~
-..“‘-: ._ —> =g
/ i V ° P — _pb — O
“,h 'I“";_ - Exercise: calculate V & E on
‘IJ( *1-, N P-n=o, cylinder axis inside & outside

e & N
- I ,: < o = - . dP(x
i = g A bound charg.e V- P(F) = (x) kv =—p, (x)
— volume density: dx
i d
d o B ~
_+ . | ) bound charge P-n=-h P-Ah=kI*+h
" 2 L. — = surface density:  (left surface,7ni=-%) (right surface,7i=3%)
XxX=D -
. ek +
Py =4
I""-"I.G
b.right Exercise: verify that Q, = 0




Uniformly polarized sphere of radius R,

—

P-n=Pcosf =0,

We already encountered this surface distribution when
solving the problem of a conducting sphere in an applied

field. We know (see also the formula list) that generatesa ——1— ]

uniform field opposite to P inside the sphere and a dipolar ,.e-"’;;]' ‘E'"“-_,H
field outside: = ~ :;}\.T.ﬂ \
Oy [ P ] / iy o ’{:}\\
—X ’l.-'f f S
2
IIII.

E . =-—
O =0, COS H inside
0 p— 3g, 3&,

(= Pcosd) E sie =E5  with:

outside

p=P-Vol :§ R: P

sphere

there exist two Ferroelectrics (spontaneous intrinsic polarization)
types of dielectrics: <

Linear dielectrics (induced polarization)

Linear dielectrics

A linear dielectric is one in which the polarization is directly proportional to the macroscopic

(average total) electric field inside the sample: P = € X Emacro
The constant of proportionality is g, times a pure number, ¢ , called ELECTRIC SUSCEPTIBILITY
This equation is only apparently simple, because the macroscopic field is itself an unknown, and
depends on the polarization P! To see it, let’s consider a typical problem: a piece of linear
dielectric material in a uniform applied external field E_ . . We want to find P as function of E

ext ext.

It is tempting but WRONG to write% since the macroscopic field is NOT equal to E_, .
We need to be more careful. 1 A
Example: dielectric in the shape of a very thin disk or slab Sl I./' <1
Let’s assume that the induced polarization is parallel to the applied field and = j I
constant (we try and see if it works). The polarization creates a field (called ' e P

depolarizing field) which may be calculated from the bound charges (two
(quasi-infinite) sheets with uniform and opposite surface charge density

In the present case we find: FE =—=—

depolarizing

—— ﬁ.ﬁ:_pb:() g &
(only true for a uniformly polarized infinite slab)
Hence from the definition of linear medium we get:

B, . . . ~ p _ AL
P = ZSOETOT = ;{go (Eext +Edepolarizing): ZEO[Eext _8_0] = P = P o 1 + Z EeXt

The quantity & =1+ y is called relative permittivity. We thus get: P=|(e, —1)80/(9,]]57?ext

The proportionality factors we found are NOT general, they depend on the dielectrics’ shape =



Cylinder of linear dielectric material in E_,

Let’s assume that the induced polarization P is uniform. Then
there is no bound volume charge, but only a bound surface
charge: o,= P.A= |P\COSH . We therefore get:

) o P
P=ye, (Eext + L tepotarizing ) - A% (Eex’ - 25‘} -
0

~ ~ ~ & g —1
P 1+£ = ZgoEext = Pinduced = ;{ 0 Eext = 2 . 8OEext
2 1+ %4 g +1
2
IMPORTANT: the trick of assuming that he induced polarization is uniform does not always work
In fact it almost never works! For example take the same cylinder under an applied axial E-field:
SR : I e R Elapan Hng  If we assume that P is uniform,
B i ) st B } f/fr . —\\?‘J . then the depolarizing field
R e il ' - would be that created by two
S Cor- - = v disks, which is not uniform.

-

But then the relationship P = ¥&yE,, = X&,(E ., + Ejppoiunizing) cannot hold, since P and E
uniform, but Ey. o parizing iSN’t! (Another way of seeing this is calculating graphically the total field
Eext * Edepolarizing@Nd Noticing that it is not parallel to P). Hence our initial assumption that P is
uniform is wrong !! The problem of finding P for an arbitrary shape is complicated.

oxt A€

Exercise: what happens in this last case if the cylinder is very long & thin (needle-like)?

Displacement field (D)

Many problems with dielectrics involve also free charges, both outside (external charges) and
inside the dielectric. (An external field acting on a dielectric may be caused by a set of free
external charges in vacuum or on conductors nearby the dielectric. On the other hand, a
dielectric may contain free charges if it has been electrized , for example by rubbing it or
bombarding it with ions or with electrons.) In a typical problem with dielectrics and conductors,
for example, the polarization is initially unknown; however also the distribution of free charge
on the conductors is then not known in general, since it will be affected by the polarized
dielectric. This complicated problem may be simplified by introducind an auxiliary field D,
defined as follows. First, consider that in such a problem the total macroscopic field E is
generated by both free and bound charges. Hence:

§-E=£=&+& . Using o, =-V.P , we can write Gauss’s law as 6.(50E+13):pf
80 80 80

We define the (macroscopic) D field as: | [) = EOE + P Sl units of D = units of P = C/m?

It follows that the field equations for D are: 6 . D =Py & 6 X l_j — 6 X }_5

{NOTE: “extra” charges inside a dielectric are free charges, since although they move slowly, they are not
bound to an equal and opposite charge: if an atom of the dielectric is ionized by adding an electron, this
extra electron can jump to any neighboring atom and thus move through the material without an associated
positive charge moving with it (it is then a free charge). The same happens when the ionization occurs by
loss of one electron: if an electron from a nearby atom fills the vacancy, it leaves another vacancy behind,
hence in such case there is a positive free charge (called vacancy or hole) moving freely in the material.}



Linear dielectrics and dielectric constant

In a linear dielectric, the polarization is directly proportional to the macroscopic field E inside

themedum:  p— y e E = D=g,E+ ye,E =1+ x)e,E =¢.¢6,F
\ﬁ(_l
The equation linking D and E is called constitutive relation €,

¢, =1+ y,, :relative dielectric constant or relative permittivity

Material Dielectric constant Dielectric strength e, —> dimensionless number
g, Emax in 10° V/m
: material &,
air 1.00059 3
polystyrene 26 20 Benzene 2.28
Lucite 28 20 Diamond 5.7
Plexiglas 34 40 Salt 59
Teflon 2.1 60 Silicon 11.8
Mylar Sl Methanol 33.0
paper 5 16 Water 80.1
;used quartz 3.8t04.1 Ice (-30° C) 00
yrex 4106 14 o
water 80 KTaNbO; (0° C) 34,000
strontium titanate 332 8

IMPORTANT: in a perfect metal there are no polarization effects, hence

P=0and D= SOE, just as in vacuum. In other words, €,= 1 in a metal

Example: a linear dielectric in a capacitor

Linear homogeneous dielectric inside a parallel plate capacitor held at a potential difference V
By symmetry, the free charge density on each plate is uniform. Hence it is straightforward to

determine D from Gauss’s law for D :
= The boundary condition for E yields c,., = o; /¢,
| +

. For V we have szE-dﬁzEd
=0~ /e V-D=p, "
( W5 - . A Hence V = o, d/e, g, . If the capacitor has total
LY \ —»>D=cx=o,|x area A, then o; = Q; /A, where Qs is the total
| / i D G. free charge on one plate. Hence:
F | E=—=—L V=0Q;d/(Ae g), or: C=Q;/V=¢¢,A/d
81’80 grgo

-

oY
o

—? From these results we can calculate also everything about the dielectric,

—

21 + o4

< +—— namely P and o,
4 =

The capacitance increases from its value C, = ¢, A/d when the ?@ 6?_ =2 ®_ POD ®_i6f
capacitor is empty, to the value C = ¢, C, when the capacitor is LR LS i +>Gb
filled with dielectric. Why is the capacitance higher? F_F F =
The physical cause of this is the depolarization field, or if you OO0 600 0,
prefer, the bound charge density at the surface of the

dielectric, which effectively reduces the magnitude of the Question for the class: why can
total E inside the dielectric, so that more free charge is we neglect the other eq. for D? :
needed to obtain the same voltage across the capacitor. VxD=VxP




Boundary conditions&charge in dielectrics

VxE=0 = E,=E, V.-D=p, = Dl.ﬁ1+ﬁ2.ﬁ2:gf
ﬁézgﬁ = El-ﬁl+E2-ﬁ2:a/go or D, —D, =0,
0

We'll use the same tool (boundary conditions) also in other topics, for other interfaces & fields

— —

D :grgOE — :ﬁ.ﬁ:6-(@505'):grgoﬁ-E=8r80%=8rpm
R 0
V-D=p,

—— pf =&.P for a homogeneous medium

. . . =2 P Py
Poisson’s law in a homogeneous medium then becomes — V) =~L = L

g &8,
Hence if a homogeneous dielectric is not charged (p;= 0), Laplace’s law V2V =0 holds

Simple relation (only valid at the interface of a conductor with a linear dielectric) = since inside
D = E =0, and outside both fields are normal to the surface, we have:

Eout :G/EO & Dout :Gf

D = 8r80E — O,=¢&,0,, <«—— onlyataconductor’ssurface!!

Problems with 2 dielectrics in capacitors

2 types of problems:
(a) highly symmetric, with the separation between media running orthogonal to E
(b) Less symmetric, with the separation between media running parallel to E

Strategy for case (a): guess the symmetry of D and o; ; calculate the relation between D and Q,
then apply constitutive relation to find E; integrate to get V as function of Q; (whence C = Q;/V)

Strategy for case (b): study the boundary conditions for E to guess the symmetry of E (which will
be the same as that of the empty capacitor); get V and the total surface charge density ; hence
aoolv constitutive relation to find D. and from there get o; and Q; to obtain the expression of C

IMPORTANT: in the definition of the
capacitance C, Q is the total charge
on the metal, that is, the free charge :

> . O
2

(a) (b)



Electrostatic energy with linear dielectrics

The electrostatic energy for a set of 1 1
U=— |d Vir)+— dA Vi
conductors and LINEAR dielectrics is: 9 I TP () V(T) 9) -[ o () V()

volume surfaces

Here V(r)=V, , (¥) isthe total potential due to both free and bound charges.

The first integral is over the volume that is NOT occupied by the conductors, since p; = 0 inside a
metal. The second integral is over the surfaces of the conductors. Using /. ) — D in the 1%
5

integraland ).j = o, in the 2" (which is valid at a metal surface since D = 0 inside) we get,
integrating by parts: 1 L 1 N
U = [Ejdr V(v -D)] +5jdA(VD)- A

=V.(VD)-D-(VV)=V-(VD)+D-E

The first term in U is the volume integral of a divergence, which due to Gauss’ integral theorem
is equal to the flux of the product (V D) through the surface delimiting the volume in between
conductors. But this flux is exactly equal to the last term in U changed in sign (since the direction
of the normal vector is inward the metals in the first case, outward the metal in the second

case). Hence we get: U = %J.dTD E

We can write our result in terms of the energy density u

defined as: U = J.dT u,
We find: 1 1

el »

Force on metal surfaces and on dielectrics

Since electrostatic forces are conservative, one way to calculate them is as gradients of the
electrostatic energy. This is particularly useful in the case of a capacitor, whose electrostatic

o 1 1 10;
energy is simply: U, =EQfV =§CV2 = —%
The plates carry opposite charge and are therefore attracted to one another. We can calculate
the attractive force on one of the plates using the following method: take one of the plates to be
fixed and the other one to be mobile, and take the total charge on each one to be constant (that
is, the plates are electrically isolated). Because of energy conservation, the work done by

electrostatic forces to pull the mobile plate by a distance dx must equal minus the variation

. Consider for example a parallel plate capacitor.

of electrostatic energy of the configuration. In other words, the force is simply: F = _iUel .
Since the charge is constant, this can be written as: X

d(107] 1, d(1j_1Q§ dC _1,,dC

dx\C) 2C*dx 2 dx
Although we calculated this force assuming that we were holding one of the plates fixed and
maintaining the free charged fixed as well, the electrostatic force is determined entirely by the
distribution of charge, free and bound. In other words, it cannot possibly depend on how you
plan to measure it, whether by keeping one plate fixed or not, or whether they are connected to
a power supply instead of being isolated. Therefore, the formula that we found is actually
always true. Moreover, if instead of considering a moving plate we consider a dielectric that only
partially fills the volume of a capacitor, the same formula applies, and in such case it gives the

force on the dielectric ! (see next slide)




Electrostatic force and pressure

1 1 1
We saw in the previous slide that the force in a capacitor is |F, =——0Q> i(—j =—V? ac

C 2 dx

For example, for a parallel plate capacitor completely filled with a dielectric of relative
permittivity ¢, , if the plates are separated by a distance x we have we have C=¢ g,

Area

Hence we get: X
MeES 1l pd(1Y 1 ,df x (1 O 1
=70 —| = |=79, —| ———|=% = o Area
27 dx\C) 27 dx\¢ge¢g,Area) 2 ¢&.s,Area 2.,
This results suggests defining an “electrostatic pressure” on the conducting plates as
F 1 1 I - - i i
p,=—t = G/% _ D*=-D.F the electrostat!c pressure is thus equal to
Area 2s.&, ° 2¢.¢8, 2 the electrostatic energy density, p, =u,, !

Other example: a dielectric is partially
inserted in a parallel-plate capacitor.
In terms of x (length of empty portion
of the capacitor), the capacitance is:

bx b(l—x b b
C=507+8r80¥:8,8056+803x(1—8r)
Hence:
F, :lvzd_czl(l_gr)goé\ﬂ :_l(gr_l)goﬁvz dielectric! o
2 dx 2 d 2 d Applications:
-electrostatic levitation
The fact that F < 0 means that the force tends to pull in the dielectric -polymer patterning

Microscopic theory of £, for linear media

The field E,,, felt by an atom of a dielectric is the sum of the external field E_,, and the field of
all other dipoles. In the simplest case, the field E,,,, felt by each atom is the same, so that the
induced microscopic dipole moments are all equal and given by p = aE,,, . The macroscopic
polarization is then P(7) =np . Let’s calculate the relationship between g, and o

Case 1: dilute apolar gas In a gas the atoms or molecules are relatively far from one another, so
that we can consider that the field they produce does not affect other atoms. Hence £, = E...

T = - - & a
Then, with E=E,,: P=np=nak = ys,E = na = ys, ={a="2(s, —1) :>gr:1+n—
n

&)

Case 2: dense apolar liquid/solid

In condensed matter E, ,, differs considerably from the applied external field and also from the
macroscopic (average) field E_ ..., inside the dielectric. We use the following approximation: we
take £, to be equal to the macroscopic field inside the dielectric plus the field produced by the
walls of a small spherical cavity carved inside the polarized dielectric, which is assumed to have
a locally uniform polarization P. The field due to the cavity walls is generated by the bound
charge density, which goes like cosB; hence such field is equal to +P/3¢, (and is parallel to +P).

—

S , P _ _
Therefore. P:np:naElocal:na(EmaCV0+_J : P(l_najznaE:P:

36‘0 &,
na _
= y,=— & & Xu _3&, & —1| Clausius-Mossotti = X0
‘g —nal3 @ =— =
0 nl+y,/3 n g +2| relation

The Clausius-Mossotti relation holds for liquids, glasses, and cubic crystals. It reduces to case (1) fore, = 1



Mechanlsms of mduced polarlzatlon

Fj’H Eext Q e
et -4E,, +q'E,

Er

€ 1.0006 2.24 2.28

r

(3) Orientational (permanent dipoles): —_
—
103 365 “ . @& P TI'=pxE,

If all microscopic dipole moments (induced or permanent) are identical, P = n]z In the case of
permanent dipoles, p is fixed, therefore P, and as a result x and €,, are largest when n is largest.

(4) H-bond network dynamics (hydrogen-bonded systems — see TOPIC 6):
The dipole moment & intermolecular

interactions of water and alcohol is mmmm 1-propanol

determined basically by the O-H molecular  H,0  CH,OH  CH,(CH,)OH  CH,(CH,),OH
group and by the H-bonds which it formula

forms. P and €, are largest for largest

) , 81 34 26 22
density of dipoles and of H-bonds:

&

Ferroelectric materials & applications

onic insulators > g =5+ 10 Ferroelectrics: BaTiO,, PbTiO,, KNbO,, LiNbO,
ferroelectrics > ¢ =103+ 10%
(T, =120 °C)

BaTiO3
high-T structure: .
Perovskite lattice de plata
low-T: Ti** ion no
longer fits in the
octahedron of 0%~
ions & moves to

off-centered site

© Ca2* or Ba2* or Pb?*
® T+

BaTiO, capacitor,
top and side view.
It can store 1000

= dipole moment more charge than
_ . . a normal capacitor
These materials are usually piezoelectric :
(used in atomic microscopes, microphones, energy harvesting devices, ...)
. — -
"'?*' +? = +@ ;' - SET T Left: Spontaneous polarization of a
i ® i & © 66 o QL <l (L &L ferroelectric crystal
© 0 0 0 Middle: voltage across material is lowered
1819 1587% = .
® — upon compression
Right: Elongation of material is obtained

|

|

|
—>
| —o0
l'le—o
o—o

| [&—0

applying an external potential




Microscopic interactions in dielectrics 1

Between charged ions and/or dipolar molecules

- charge-charge (example NaCl):
The force is given by Coulomb’s law

interaction energy: U=qV.,=qV, = 49,9, 9
417 g2 T 427 q1 T
dre v

- charge-dipole:

The direction of the force can be found graphically:

(by Newton’s 3rd law the forces are equal and opposite)
Interaction energy (both expressions are equal since 7' = —j )

- -

— r -
quipole (7") =9 4p = U(V) =

- =
TE,r

= U(F,) = _ﬁ ) Qcharge (’7,) =-

- dipole-dipole:
as between 2 charges, F is attractive (a) or repulsive (b) :
Interaction energy: b) - < +t

U=—p-E.(r)=—p, | BT Py | ] [ﬁl-ﬁz_xﬁl-m(ﬁz-a}
b Y| dnme, r Amey”’ | dme,| PP 7

Microscopic interactions in dielectrics 11

With induced dipoles (apolar molecules) p = a E; (E; = field due to nearby molecule(s))

a) — —» 1+

- charge-induced dipole: p « E; «c 1/r% . The potential due to the induced dipole goes like p/r?
Hence U ~ q p/r>~ 1/r* and it is attractive: U=-C, /r* (with C, > 0)

- permanent dipole-induced dipole, p « E, oc 1/r3. The potential created by the induced dipole
scales as p/r>~ 1/r°>, hence its field goes as ~ 1/r® . Since the energy of a dipole in an electric
field is the product between p and E, U=-C,/r® (with C,>0)

- instantaneous dipole-induced dipole: force between 2 neutral apolar molecules!! U=-C,/r®

Attractive forces between neutral apolar species are called London or Van der Waals forces.

Classically, they arise from fluctuations of the atomic charge resulting in instantaneous dipoles,
but they are really a quantum effect, due to vacuum fluctuations of the e.m. field

In all cases, including those of the previous slide, a repulsive potential must be added at short
distances, since molecules and atoms cannot overlap (Pauli exclusion principle). The form of the
repulsive potential is empirical or chosen for mathematical convenience. An example of
potential energy used in van der Waals solids of neutral apolar molecules is the Lennard-Jones
potential (the repulsive term is here chosen to simplify calculations): A B

U, )= T2 T "¢
-> connections with solid state physics course ¥ ¥
- Madelung sums in ionic and van der Waals solids > COHESIVE ENERGY
- Average effect of interactions = ELECTROSTATIC SCREENING. Example: force on a point
charge embedded in a dielectric



Magnetic materials and magnets (TOPIC 3)

Importance of SPIN in physics PARTICLE "
L=hs e He- = —9.27- 1072

§ =< m= [ )§ pr pyr = 1.41-107%
Statistics n' pno = —0.966 - 1072

From the magnetic point of view, each spin is a little magnet. Since the electronic spin is the
largest one, but also because electron spins are much more correlated than nuclear spins, the
magnetic properties of materials basically stem from the magnetic dipole of their electrons.
The electronic magnetic moment in an atom (especially for heavy elements, which are those for
whic magnetism occurs) is not really proportional to s, but to j = s + I, where 1 is the orbital
guantum number (this is due to the so-called spin-orbit coupling: see quantum physics course)

We will see soon that a magnetic material can be described as a collection of “spins” (or j
moments), and as such we will study them in a fashion similar to that employed for polarized
dielectric. We will also see that magnetic interactions in a magnet, for example, is really of
electrostatic origin. These two characteristics of magnetic materials justify discussing magnetic
materials at this point of the course; not to mention that historically the first scientific
description of magnetism came well before the description of currents.

Before we go into all that, however, let’s start by first looking at the magnetic field of a single
electron, and at the effect that a magnetic field has on a single spin.

.
2
S
=
®

Force, torque & energy for a magnet

Electric case:

— F:zl:quxt ’ jj:qd

— - — F = - =
el I'=pxE

Eext _F;l d p ext

< -z

U= —pP- Eext
Magnetic case: Fmag ="q," B, »m="q,"d
BeXt U - —7’71 ) Eext

To perform experiments with magnetic poles “q,.”, it suffices to take a magnet in the form of a
long rod: the north and south poles are then sufficiently far that they can be made to interact
separately with other “poles”. In this way Coulomb actually demonstrated the existence of a
magnetic force between poles that goes like the inverse square of the distance, just like
Coulomb’s force between point charges. However, while there exist isolated charges (electrons,
protons,..), isolated magnetic monopoles do not exist: if you break a magnet in two, you get
two magnets each with a south and a north pole, so that the net pole is always zero: in this
sense magnetic poles display similar features with bound charges in dielectrics.

The fact that there are no magnetic monopoles has a major consequence: electrostatic fields
start at positive charges, end at negative charges and are conservative; instead, magnetic fields
don’t start or end at any point (at most at infinity), since there are no monopoles: magnetic
fields are are solenoidal. This is the key feature we will exploit to find the field of a magnet.



The magnetic dipole (spin) field
Like an electric (point) dipole produces the E-field Epmdlpole =m(3 r'sr F—%) , @ magnetic

~

dipole (spin) generates the B-field: ~
~ Uy | ,m-7 - m
Bdipole = 3 5 r—= 3
A r r
iy . . 5 - - m-r
Formally, such field is conservative: we can write Bmagnen»c = —,UOVdmag,,m-c with & = —
dipole dipole dip% le 4 Vi1

However, we know that B is not conservative but rather solenoidal. In fact what happens here is
that the singularity at r = 0 masks the solenoidal character of the field:
%
/

E < B
dlpole o /,_ \ Lol
i w .\ “dipole
a ( *1? '
] i fla))
flF ‘ ;'\:}“ ot l
b = Sl unit of B: Tesla (T)
#47r80 . 4 B G: B-di =y, [)
| Pl eA=107" [SI] m~107 [S1] = Sl unit of m: A m?
B

= = ~107"°  [SIunits]

= While electric-dipole interactions play a dominant role in polar dielectric materials,
magnetic-dipole interactions are too weak to be the source of magnetism (e.g. in iron)

Vector potential for a magnetic dipole

_ Ho MXT" Eor this purpose, we need the

We want to prove B,,...ic =V X 4,u0meic » With

dipole dipole magnetic ~ g p3
following vector identity: if C does not depend on 7 , VX(CX G(?’)): C(V-G)—(C-VG
proof: ; } i : j 7
CxG(i)=|c, €, C|=Vx(CxG@)=| o, 2, 9.
G, G, G C,G -CG, CG-CG CG -CQG,
[Vx(CxG()],=C0,G,-C0,G,~C.0.G.+C,0.G.+{C.8,G,~C.0,G,}=
-C,(0,G,+0,G,+0.G.)-(C.0,+C,0,+C.0.)G. = C.(V-G)~(C-V)G,
Proof that B can be obtained from a vector potential: (Wll WOrks forf )
I"

- = = (Hy . T Hy - (= T o (-~ =\T 3 e ~(m-r
Vx A =V — Vi— |——m-V)—== 1,0 —u,V =
8 %ﬁ'ffnc (47z e r3j 47 m[ r3) 47r( )r3 Ho® " (r)m = iy (47zr3j
= 4,6° (F)m + Emagnetic Hence for 7 # 0, V x }imagm = Emagnen.c d%ﬁ;’j”"’
dipole dipole dipole

— —

This further shows that B is solenoidal, since E’ =V x 2 — ﬁ .B = ﬁ . (6 X ;1): 0

—

(in fact V. V x @): 0 VYG ,seeproblem 0-9)

http://physicspages.com/pdf/Griffiths%20EM/Griffiths % 20Problems %2005.33.pdf



Magnetized media

A magnetized medium is a collection of magnetic dipoles. We cannot deal with all magnetic
dipoles in a sample (the total number of spins is that of unpaired electrons, which is of the order
of the number of atoms, or Avogadro’s number). We therefore define a MAGNETIZATON FIELD

as the average magnetic dipole moment per unit volume: SN

Magnetization field |M = L Z m

52_ 1 i
Hence an elementary volume 7 of a magnetized sample carries an elementary magnetic
dipole moment equal to: dmi = Mdt . Just as we did in the case of polarized dielectrics in topic

2, let us define the POLE DENSITIES associated with the magnetization field, as:

p, ==V -M  Volume POLE DENSITY
==
=M -n  Surface POLE DENSITY

The sign of the magnetic poles can be positive (north pole) or negative (south pole). (A magnetic
dipole moment goes from south to north, that is, from — to + like an electric dipole). These
definitions are consistent with our experience that a bar magnet has a south and a north pole.

Sl unit of m : A-m? = unitof Mand g, : A/m éWhy does the ampere (A) appear here?-> topic 4
What is the B-field produced by a magnetized object such as a magnet? We cannot calculate it
using the pole density as source of B as the bound charge was the source of E, because
otherwise we would get a conservative B that starts at north poles and ends at south poles. This
would contradict the solenoidal nature of B: the field lines of B go around in closed loops, they
never start nor end. The way to get a solenoidal field is to start with the vector potential A of
the magnet and then taking its curl: B =Vx4 This guarantees that V-5 =0

magnet magnet * magnet

Fundamental theorem of magnetized media

_ Mg mXT

magnetic ~

3
dipole 4z r

We know that for a single magnetic dipole the vector potential is

Hence for a continuous collection of dipoles (magnetized object) each at position r’ one has:

A7) = ja’A o Id (F")x ror = +o Idr M(*’)xi?;3 . Therefore, taking the curl:
Vol | | 4 Vol | ?|

B oo g Mo [ oo T My o e T (o o\ T

B(r)—VxA—47(;IdT T7><(M(r)><|77 3)_4ojdr {M(r)v T (M V)|7—7'|3}

-
|7 =7

7'
S G G R ( = J“OM(”H (D dr M@

We have obtained: B= ,UOM ﬂovu where Z(7) ——J.df M( f_f, > is the total
scalar potential of the magnetized object. 7=r]
Integrating by parts, it is straightforward to show (see fundamental theorem of polarized media,
topic 2) that the scalar potential can be re-written as:
E(F) = ! § M(?)'ﬁda+1j dr =Y M) _ 1

s \F —7\ 47 v 47 Js

Here we have used the previously given definitions of surface and volume pole densities.
Thus B can be obtained indirectly with the help of a conservative “auxiliary” field H:

(o)

m

Pm

B =01+ 1) with Ary=-v2= ! [aep, ) O L fao, i O




strateny Problems with magnet|zed media

(1) from M, find the magnetic pole densities p, = —V M and o, M ‘n
(2) from p,, and o, calculate H as you would calculate E (without the factor g, ), using:

H(r)——_[d o (F' ( :)3 jd o, (F) (7 - r,) (or calculate = as you would
|F=r'[" 4rx |7 =7"f calculate V, and then compute
. . the auxiliary fieldas H =-VZ)
(3) From M and H, calculate Bas B = /Uo( +M)

Example: bar magnet

. . . . —_—— — -
the magnetic pole density consists of two disks of <_> M () = @ @

uniform charge density at both ends of the rod.
The H field has the same form as the E-field : _
produced by two charged plates. The B field, which \ { g \
is what we want to get as it determines magnetic % Y e

forces, is then found as B = yO(FI+A7[) NG N LT f ]

- the black lines are the lines of H (or E) — : _
The white lines inside the rod and the ———— L_______' - —
black lines outside it are the lines of B (or D) s M - e
(outside, that is, in vacuum, B =y H ) F e LN AN
Notice how the LINES of B FORM CLOSED LOOPS / A e

Slunitofm: A-m? = ¢ Why does the Ampere (A) " W | \
Slunitof M, Hand o,, : A/m appear here?? see topics 4 & 5 i / |

Application: B-field of a spherical magnet

Spherical magnet = uniformly magnetized sphere

Since M is uniform, the volume pole density is zero: p,, = -V-M =0 R R

The surface pole density of a uniformly magnetized sphereis: o, (r)=n-M(r)=M cos®
It acts as source of H (equivalent electrostatics problem: uniformly polarized sphere)

We already know how to calculate the (H) field of a surface density proportional to cos6:

- outside the sphere the field H is a dipolar field A7) = y [37715.17 F_ﬁ}j
A r r

with the magnetic moment m = M Vol placed in the sphere’s center

<

- inside the field H is uniform (as the E field inside a polarized sphere) and equal to /7 = —
The magnetic field B (which is what we are interested in) is then:

n-r . m } -~ 2 =
B(F) =22 o 3m—rr—ﬂ outside ; B=—u,M inside
47 37°

5 3
r r




Field equations and boundary conditions

Field equations for the auxiliary H field:

- -

Bissolenoidal: V.-B=0 = V-B=0=>V-H=-V-M=p

®(B) = B, - i Area+ B, - ii,Area =0 L. L
H=-VE = VxH=0

Er s 1. V-H=p, = ®H)="g,"
T =|B. =B O(H)=H,-nArea+ H, -n,Area
l‘ﬁz nl n2 zuqmn: amArea
K
. [T S
VxH=0 = R
H,dl,+H,dl =(H,—-H,)dl|=0 i’l‘i”{—i"
2

leth

t

Application of boundary conditions
- midterm exam 2013

Permanent-magnet magnetic circuit
[ e— N)

l ) M

+—

—

S - g

ST — "4 —

If the magnitude of M is constant, and the field lines of M are always parallel to the sides of the
magnet, then there are no volume poles: p,, = ~V-M =0 .The only magnetic pole density is
a surface density, present atthe airgap: 5 — 7.7 = i‘M‘

+0, — O, This surface pole density acts as source of H as a charge density of

/ / identical geometry, such as the one present in a parallel-plate capacitor,
- generates an electrostatic field E. In the limit that the air gap size g is

much smaller than the linear dimension d of the magnet’s cross section,

the planar symmetry approximation can be applied, so we have:

- H_{o-mx:Mx ,in the air gap

0 ,in the magnet

+ + + +

Therefore:

&

B is the same inside

M in th
{ﬂo , In the magnet = 1,0, % = and outside the

B: M H = — .
ﬂo( + ) yOF[:yO‘M‘x‘: ,in the gap magnet: B = u,o, %




Magnetic force at the air gap
4 . S— ‘\\ +G% /—GO
l M

—

M

+ + + +

Air gap
\\> — —

We know from Coulomb’s experiments that a magnetic field exerts a force on a magnetic pole,
givenby F,.. ="q," B,,, , much in the same way as there is a force due to an electric field
applied to a charge: F,, =q E_, . In the case of a parallel-plate capacitor, the force on a metal
1 1
plate is given by Fo=YqE='0 4reaE
2 2
Here E is the total electric field in the capacitor, and the factor % is introduced to avoid including
the field due to the charge on which the force is exerted. We see that the electrostatic pressure
pushing the plates together is equal to the electrostatic energy density b, = leE _ lD'E

A
AN

One could argue that the same result should apply to the air gap in a magnetic circuit, namely:

F =l(7mAreaB:>pma =lamB=lH-B
2 £ 2 2

mag

1
We will see in topic 5 that EH-B is indeed the energy density associated with magnetic fields.

for the class: ¢ Why didn’t we consider the simpler case of a uniformly magnetized thin slab?

Magnetic materials

Ferromagnets (spontaneous intrinsic magnetization)
there are two types (& antiferromagnets)

of magnetic media: Paramagnetic media
Linear magnetic media (analogous to linear dielectrics)
(induced magnetization)

Diamagnetic media
(no dielectric analog exists)

Most materials are non-magnetic or show only weak magnetism as a (linear) response to an
applied field. Few materials, for example magnetite Fe;0,, show strong magnetic properties:
these materials are the ones used as permanent magnets (in Spanish, “imanes”)

In the case of linear magnetic material, we will be interested in the magnetization that arises
when a linear magnetic material is placed in an applied field. A linear magnetic material is one in
which the magnetization is directly proportional to the macroscopic field inside the sample. To

—

keep the analogy that we have been using, a linear magnetic medium is such that: 37 — ¥ H

The constant of proportionality is a pure number, ¥, , called MAGNETIC SUSCEPTIBILITY
Since B — o ([-[ _|_M) we then get B — (1+y,) ,UoH U ,UoH where we defined the
RELATIVE PERMITTIVITY as u. = 1+ X

As for the electric case, these equations are only apparently simple, because the macroscopic
field H is itself an unknown and depends on M.



Analogy of magnetic & dielectric media

Notice the analogies D=cE+DP VxD=VxP V-D=p
0 f
Between the Band D 3 e . Uy B T i N
field equations = oH + M xB=uVxM 5=0
Mathematical
- (r=r o) r -~ -
equivalence of the E(r)—4—_[df p(r |( —;7’|) Id |(r_77,|)3 , VXE=0
H field produced by
magnetized bodies % (r—r ) . (F=7" - -
H(F)=— |d7) — | da _

and the E field: 7 -[ ep )|r_ j 0, (F )| 7P , VXH =0
Note also the analogies  p _ ZegoE :(gr —1)€0E D= (Ze _|_1)80E’~ — 5rgol:j
between the equations R _ _ . ~ ~
for linear materials: M=y, H= (/Ur _l)H B=(+y,) uH = p,pu H
Problems with magnetized media can be solved as those with polarized media by substituting:

B - - - - -

— oD, HogE; Mo P, p,op, 5 06p,

Hy

The similar effect that E and B have on dipoles (whether electric or magnetic), together with the
analogy between magnetized and polarized systems, suggest that we may also write the energy
of a set of linear magnetic objects in a magnetic field as: B>

zﬂOﬂr

—J-dr—B H = Idr

Linear magnetic materials
M = z,H =(u, -1)H B=(1+x,) toH = pt,u,H

As for the dielectric case, these equations are only apparently simple, because the macroscopic
field H (which is a priori unknown) depends on M.

Example: a sphere of linear magnetic material in an otherwise uniform external field B, . Since
in vacuum B = p,H, this is the same as saying that the sphere is in uniform applied H_,, = B.,./H, -
To find M as function of H,,,, we assume that the induced magnetization is parallel to H,,, and
constant . The magnetization creates a surface magnetic pole density which itself generates an
H-field which may be calculated from the pole density, proportional to cos8. We get:

—

- ~ - - M - -
M = Zm (Hext +Hdemagnetising): ZmHext _Zm ? . Hence M(l + Zm /3) = ZmHext » Or:

- 3 - -1 -~
M = AH =3 Ay H . Hence B outside is p,H,, plus a dipolar field, while inside
3+, M, +2

B, = ,uo( +M)= HO(ﬁext +Hmagnetising +M)= IUO(ﬁext +§MJ 3-—— el H

Ho+2

Paramagnetism > ¥, >0, 4, >1 Diamagnetism = ¥, < 0,4, <1

In many cases (especially for diamagnetic media, but also for several

paramagnetic materials), ¥, is very small, so that basically p, = 1



Diamagnetism vs paramagnetism

Origin of paramagnetism (y,, > 0) = alignment of unpaired electron spins (unpaired magnetic
dipoles) of medium with applied field = equivalent to orientational polarization in dielectrics

Origin of diamagnetism (,,, < 0) = response of electron pairs with total spin zero to an applied
field : it can be thought to be due to Faraday & Lenz’s laws at the atomic scale (see topic 4) 2>
there exists no dielectric equivalent of diamagnetic materials

Magnetic susceptibility and permeability: some examples

e et T
O, (STP) +1.9 x 106 H, (STP) 27 % 10-9 H,O(£,293K) —-9.0x 10~
Na 4+8.5 x 106 He (STP) —l.1x 1077 CO (STP) —55x%x107?
Al +2.1 x 1073 N, (STP) —6.7 x 1077 NO (STP) +8.2 x 1077
K +5.7 x 1076 Si ~33x 1076 CO, (STP) ~12x 1078
Cr +2.9 x 1074 Ar(STP) —1.1x1078 Si0; —1.4 x 107
Rb +3.7 x 1076 Cu —9.6 x 107
W +7.0 x 1072 Xe (STP) —2.6 x 1078 s
Nd +2.8 x 107* Au —3.4 %1075
Gd +8.7 x 1073 Pb —1.6 x 1073 ‘;‘
S

X is usually quite small, so that basically p, = 1 I

diamagnetic paramagnetic

. . . needle S needle
Question for the class: how will a paramagnetic or

diamagnetic bar orient in an applied field, and why? 2> ‘

N ‘

Saturation magnetization
(paramagnetic & ferromagnetic materials)

The value of the microscopic dipole moment is fixed, for a given material, and determined by
the electronic orbital configuration: m is proportional toj =s + [ (total moment = spin+ orbital
moment, see Quantum Physics course, spin-orbit coupling), which is fixed for a given electron.
(notice that this is different for the electric case, where there is in principle no theoretical upper
limit for the value of p, 4,.q @5 One can pull two bound charges further and further apart)

For a ferromagnetic material, the maximum total magnetization is when all magnetic dipoles in
the sample are aligned in the same direction.

For a paramagnetic material the linear relationship between M and H can’t hold for large H,
since there is a maximum possible magnetization, corresponding to all magnetic moments
aligned in the same direction. This implies that the magnetization curve is linear at low H, and
then levels off at high H (high applied B field):

i " SR I S N T2 - paramagnetic materials
oA / M 4 ; BT | WAGNET Wanan 7€ different from linear
| dielectrics, in which there
/ is no theoretical upper
__tc /-‘ s limit for the induced
/ R) polarization field P

Hes L b / ' saturation magnetization: .~ .
TEEEE =S (n = atom number density) Msat =nm




Gas- vs condensed-phase magnetic media

The class of (non)linear magnetic media is more varied than that of (non)linear dielectrics.
Among linear media, there are materials with y >0 (u. <1) , that are called paramagnetic
and that are analogous to linear dielectrics; but there are also materials with ,, >0 (x, <1),
called diamagnetic, and whose magnetization is opposite to that of the applied field

- closed shell configuration: 72 =0 - DIAMAGNETISM 4—3‘"11;1:;:”
(example: full octets) examples: H,, noble gases
gas .

state - open shell configuration 71 #0 - PARAMAGNETISM ik
(rare: open shell atoms example O, : weliudon  alakeds il
react to form molecules) 5

E=Tm
- Materials with only s or p valence electrons fwithout — l SEme
. applied B : W/

Insulators: 1 =0 Metals: —H—"

- DIAMAGNETISM - Pauli paramagnetism: < —~—F e
solid . ®
state with L4

L applied B : i, S5

- Materials with d or f valence electrons: f—l.—' 1. {,_ 7

High Temp. : PARAMAGNETISM -%_ X 1 =

Low Temp. : nonlinear behavior (ex. ferromagnetic) e . 50 » ' = e

Microscopic magnetic interactions

Nonlinear magnetic media: Just like the class of linear magnetic media is more varied than that
of linear dielectrics, the behavior of nonlinear magnetic media displaying spontaneous
magnetic ordering is also much richer than that of ferroelectric materials.

o od
i o~ T
- Mechanism of interaction: exchange coupling > @é C ‘jﬁf—' ’Qj _t?;:'::‘_u
7

- Magnetic behavior: transition from a high temperature phase (usually paramagnetic) to a
low-temperature phase with long range magnetic correlations (ferromagnetic, antiferrom.,
ferrimagnetic, spinel order, Kondo state, incommensurate phases...

(e 'lmgla T, PARAMAGAETIC
r 4 oy
phase transitions (e.g. para-ferro)
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