
Microscopic constituents of matter
All matter except for that created in big accelerators is made of electrons, protons & neutrons 
Of these 3 particles, two have charge, and all have “spin” (intrinsic magnetic moment that 
produce); moreover, as they move they generate an extra magnetic field: 
                                    all matter is made of tiny charges and magnets 
In fact charge and spin are in some sense more fundamental than mass: mass is not quantized, 
varies depending on the reference frame (special relativity), and is the effect of an interaction 
with a field (Higgs particle); on the contrary, charge and spin are quantized and invariant. 
The spin is described classically as a magnetic dipole moment (a little magnet with a south pole 
and a north pole right next to one another, topic 3). This is the magnetic version of an electric 
dipole moment (topics 1&2), which is a configuration of opposite plus and minus charges right 
next to one another. This configuration of charges (electric dipole) also exist in nature, not in 
particles by themselves but in their agglomerates: the water molecule is an electric dipole. 
The microscopic constituents of matter give rise to E-fields and B-fields (and are subject to 
external E- and B- fields). The simplest description could be with the following equations: 

NOTE: Charges are depicted as points, dipoles (both electric and magnetic) are depicted as 
arrows. So in the first three topics it will be all about points, arrows, spheres, cylinders…    

plus the Lorentz force                                   and the torques on the dipoles

E-field of (point)charge & electric dipole B-field of slowly moving charge & magnetic dipole 
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Why do we settle for “less”? 
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1)    Because these expressions cannot be generalized to time-varying fields, while these can; 
In fact, the equations for the fluxes (Gauss law) are correct even for time-dependent fields 

2) Because field equations (with fluxes and line integrals) 
have a profound meaning (see next slide) 
3) They simplify the solution of certain problems: 
         3.1) high-symmetry charge distributions 
         3.2) fields near interfaces (“boundary conditions”)  

4) Helmholtz theorem states that a field that only depends on r (and not time) is completely 

specified if both its curl and divergence are known. Hence we are not really settling for less! 
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Physical meaning of Gauss’s and Ampère’s law 

for E & B (electro- & magneto-statics, física 2) 

means that E-field lines start at positive 

charges and end at negative charges

0E

0B

means that there exist no magnetic monopoles (no 
positive and negative  “charges” or poles exist that 
are source of B). B field lines never start nor end

0E

means that E-field lines never draw a closed contour, 
they never make a full circle around any point

JB 0

means that B-field lines draw closed contours 

around currents, they “curl” around currents 
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Example: electric dipole 

Example:  bar magnet 

Example:  current flowing in a ring 

Differential & integral laws & boundary conditions  
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Hence: 

Differential form Integral form Boundary form 

0

inside

Vol

Q
adE

If charge is present at the boundary between 2 media:
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Differential & integral laws & boundary conditions  

JB 0
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Hence: 

Differential form Integral form Boundary form 
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If a current is present at the boundary between 2 media:
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Gauss’s integral theorem 
Take a little volume of sides dx, dy, dz, 
centered at position r = (x, y, z) 
 
We want to calculate the flux of the 
vector field C = ( Cx , Cy , Cz ) through 
the volume’s boundary  

Consider the flux through the two vertical facets (parallel to the xy plane). The flux through the 

right facet is Cy(x, y + dy/2, z) dxdz; the flux through the left facet is –Cy(x, y – dy/2, z) dxdz . 

The minus sign comes from the fact that the flux of a vector is by definition the outward flux. By 

making a Taylor expansion to first order, we get that the total flux through both xz facets is: 

the total outward flux is then:

looking at the figure to the right, we see that the outward flux from 
an inner elementary volume cancels out with the outward flux 
from its neighbors. Whence we get Gauss’s theorem:



Theoretical tools 

- Rectangular (cartesian), cylindrical, and spherical spatial coordinates 
- Gradient, divergence, curl, time derivative 
- Dirac’s delta 
- Gauss’s and Stokes integral theorems 
- Boundary conditions 
-    Derivative rules for products (scalar & vector) 
- integration by parts

The fundamental quantities in electromagnetism are fields (electric field, magnetic field, scalar 
potential field, etc.), that is, scalar or vector functions of the position r (and, when we consider 
time varying fields, also of time t). To describe these quantities, we will need few concepts and 
tools from classical field theory, which we will introduce and use during the course:

MACROSCOPIC DESCRIPTION 

 

 

MICROSCOPIC DESCRIPTION 

(average)
Maxwell’s equations 
(in terms of r , r , g, n) 
and boundary conditions 

Atomic/solid state description: 
microscopic constituents, dipoles, 
inter-particle forces; microscopic 
origin of values of r , r , g, n

Connection with: circuit theory, electromagnetic waves, 
geometric and wave optics (PEF1), statistical physics

Connection with: chemistry, quantum physics, 
solid state physics, physical electronics, photonics

scalars and scalar fields 

Number/number density: n, N 

Dirac’s delta function:  
Electric potential/voltage: V or  

Field (or potential) energy: U 

Total energy: E 

(field) energy density: u 

Charge: q, Q 

Proton/electron charge: +/– e 

Charge density: (free f, bound b) 
    - volume  
    - surface 
    - line 
Susceptibility:  
Dielectric permittivity:  
Magnetic permeability: 
Magnetic scalar potential:  
Flux:                  Irradiance: 
Complex refractive index:  ñ     

Mass: m ; Time: t 
Temperature: T 

Length: L, d 

Speed of light: c 

Generic constant: k,  

Surface: S, Area 
Volume: Vol 

Capacitance:  C 

Resistance:  R 

Current: I ; Power:  
Conductivity:  g 

Mobility: 
Resistivity: 
Polarisability: 
Inductance: L 

Electromotance: 
Magnetomotance: M 
Reluctance: 
complex permittivity: 

NOTATION 

vectors and vector fields: 
Position:     ; distance  
Normal direction     ; velocity 
Force:     , torque: 
Force per unit charge or volume:  
Electric dipole moment 
Magnetic dipole moment 
Electric field 
Polarization field 
(electric line dipole density:      ) 
Displacement field  
Magnetic field 
Magnetization field 
Auxiliary field 
Vector potential 
Current density: (free f, bound b) 
     - volume 
     - surface 
     - line 
Poynting vector: 
Generic vector field: 
Constant vector (field) :  
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- rectangular: 
- spherical: 
- cylindrical: 
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Coulomb’s law 

 Field of a point charge: 

 Field of a continuous distribution of charges: 

By the identities: , we see that 

with or: 

Summary of electrostatics (topic 1) 

implies 

and It also implies: 
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 Field of a set of point charges: 
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with

SI unit of q: Coulomb (C) 
(1 C = 1 A  s ; 
e  1.6 · 10–19 C) 
SI unit of  : C/m3

SI unit of V: Volt (V) 
(1 V = 1 J/C = 1 J/As) 
SI unit of E: V/m 

;ddq  

Dirac’s delta 

or: 

Instead of having 2 
different types of 
formulas, for the 
continuous and 
discrete cases, we’d 
like to have only 1 

For this purpose we would need the «continuous» charge density associated with a point 
charge. This can be achieved by using Dirac’s delta function, writing formally: 

The Dirac’s delta function is zero everywhere except at one point, where it has an infinite value: 
in fact for a point charge we must have   

 
The Dirac’s delta is not a conventional function, but it can be defined rigorously as 
«distribution», that is, as an integrand, using the following definition (f is any function or field):

Dirac’s delta 

As special case with  
f(r) = 1 , this yields : 1)()( 33 rdrd

(notice that                              ) 
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Dirac’s delta & Gauss’s law 

Proof of Gauss’s law : 

The Dirac’s delta has several interesting properties. 
The most important for our purposes is the following:

Proof:

Since both the initial and final integral yield the same result, they must be equal, which proves 
 

the above equality. Note that since                        , we also have that  
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Gauss’s integral theorem
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Graphical summary of electrostatics 

SUPERPOSITION 

PRINCIPLE

For a continuous distribution   
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if the charge density is given: 

spherical  
cylindrical

planar

1) For high symmetry, use GAUSS’s LAW :  

2) For low symmetry, INTEGRATE directly, either:

or  

If the potential of conductors is given:  (possibly with an external field or charges) 
- For high symmetry : 
     option A) solve LAPLACE’s EQUATION directly in region between conductors: 
     option B) guess the direction of E, apply gauss’s law and use the line integral of E to find 
the relationship between the charge density and the potential (e.g. capacitance) 
 

- For other cases, option C) try with IMAGE CHARGES (see later)

Solving simple electrostatics problems 

Gaussian surfaces 
 for 3 symmetries 

3) For sum of two or more simple charge distributions  use SUPERPOSITION PRINCIPLE
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 HOMEWORK 

, where        goes from –q to +q

The electric dipole 
Consider two equal and opposite charges +q and –q 
placed a short distance d away from one another. 
The field lines look as in the figure. We define the 
electric dipole p of this set of charges as the vector :

               ; 1 D = 0.2082 eÅ 
(unit used in (bio)chemistry)

The total potential of the 2 charges (r+ and r– from figure) is: 

and similarly for r–
 , we get: 
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The point dipole: V and E 
The result in the previous slide is correct, but we will use a simpler expression based on the 

we find:

If p is parallel to the z axis, then, in spherical coordinates:
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The point-dipole potential represents the (approximate) potential of a very small dipole, or 
better the potential at distances r >> s. From the point-dipole 
potential we get the corresponding point-dipole field by 
taking the gradient of V and changing its sign: 
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Types of real electric dipoles: 
 

 
1) Permanent dipoles: polar molecules in which the 
center of positive charge does not coincide with that 
of negative charge (CO, H2O, Na+Cl–, …) 
 
(monoatomic molecules (noble gases: He, Ne, Ar, …), 
and symmetric molecules such as H2, N2, O2, …,  CO2, 
methane CH4, benzene C6H6, etc., do NOT possess a 
permanent electric dipole moment. Compare CO2 
with H2O: molecular structure, not formula, counts!) 
 
 

 
2) Induced dipoles: apolar atoms and molecules 
under and applied field become «polarized», that is, 
the center of positive charge (nucleus for an atom) 
moves away from the field and the center of negative 
charge (center of the electron cloud for an atom) 
moves towards the field: 

Permanent dipoles (p is fixed)

Real dipoles: permanent vs induced 

Induced dipole (p depends on E)
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O = C = O
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p = 0 

p 

C = C
Cl
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Apolar atom/molecule in an external E 

The net force on the nucleus is the sum of the force due to 
the external field and the force due to the electron cloud: 
at equilibrium Eel = Eext 

Assuming that the cloud is not deformed by the applied 
field, the nucleus is at a distance d from the center of the 
cloud and the electronic force is calculated with Gauss’ law:

 the electronic cloud is displaced from nucleus (induced polarization)

Note: here N is really the number of valence (outermost) e–, since they are more easily polarized 
But one should really do a quantum mechanical calculation ! In quantum mechanics the dipole 
moment is the operator –er and                                     . For the hydrogen atom under an applied  
 
field, for example :

with:
Vol = atomic volume 

Polarizability 0 (in Å3) for 
some atoms and molecules
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Polar atom/molecule in an external E 
The permanent dipole moment of the atom/molecule orients parallel to the applied field

     for a force par (Ftot = 0) 
does not depend on the 
reference; we choose –q )

(if E0 is uniform!)

Energy of a permanent dipole in an applied field:

If the applied field E0 is not uniform but depends 
on position, E = E(r), the net force is non-zero:

Permanent dipole moment p of some molecules (in Debyes and eÅ ) ; 1 D = 0.2082 eÅ 
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extextextextextextext

dipole
permanent
rigid EpVdqrqVdrVrVqrqVdrqVU )()()(()()(

0extexttot EqEqF

extexttot EpEdq

molecule CO H2O NH3 HF HCl NaCl CH3Cl CH2Cl2 CHCl3 C3H7Cl 

p (D) 0.122 1.85 1.42 1.75 1.04 9.61 1.87 1.56 1.15 2.06 

p (eÅ) 0.025 0.4 0.3 0.36 0.22 2 0.4 0.32 0.24 0.43 

Large polymers/biomolecules  hundreds of Debyes! 
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Q: how much is p for CH4? And for CCl4? 



Multipole expansion 

for an overall neutral system:
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What happens if we choose another point as origin? 

multipole expansion for V 

  (integer powers of 1/r) 
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p: key electric parameter neutral molecules 

p

the field produced by the molecule (in a condensed-matter context) 

the torque on the molecule in an applied field 

the orientational energy of the molecule in an applied field 

In a heteronuclear molecule (e.g. a diatomic heteronuclear molecule), p is largest when the 
difference between the electron affinity of the two elements is largest. For example, in halogens 
the electron affinity diminishes with atomic number, since 
the extra electron is further and further away from the 
nucleus; as a result, p for e.g. hydrogen halides decreases:

halide HF HCl HBr HI 

p 1030 C m 6.7 3.5 2.6 1.3 

group/bond C-H O-H N-H N-O2 C-N C N C-O C-Cl C-F C=O 

p 1030 C m 1.33 5.27 5.53 13.2 2.03 13.1 3.73 6.83 6.1 8.7 

In a homonuclear molecule, p = 0 . Examples: He, Ar, H2, O2, C60 

In larger organic molecules, as well as in polymers, DNA, proteins, p can be very roughly 
estimated as the vector sum of the dipole moment of all polar side groups:

In centrosymmetric molecules, p = 0 . Examples: CH4, CO2, benzene, C60H60 

determines

Ex.: p of alcohols (Debyes): methanol 1.70 ; ethanol 1.69 ; 1-propanol 1.68; isopropanol 1.66 
BUT, it doesn’t work so well for conjugated molecules: phenol 1.22 D ( 1 D  3.336 1030 C m) 
 



The line dipole 

d

 since Log(a2) = 2Log(a)

Using the Taylor expansion:

With

The line-dipole field is then:
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 line 
charge:

Line dipole:

(s : radial coordinate)

, we get :

h 

We define: d (“dipole density”) 

If                    , then:
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Summary 

Multipole expansion for a DELIMITED charge distribution:

Question for the class: why is the electrostatic field of a plane dipole zero? 

 

What about volume dipoles?  see next slide: a “sphere dipole” 

          see TOPIC 2 !!
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Point charge 1/r 1/r2 

Point dipole cos /r2 1/r3 

Line charge Ln(s) 1/s 

Line dipole cos /s 1/s2 

Plane charge z constant 

Plane dipole constant 0 



Sphere dipole (plasma model for the point dipole) 

point dipole

Example: metal sphere in applied uniform field

uniformly 
charged 
sphere

field outside plasma  point dipole field 
(use superposition principle to see why)

field inside plasma: 

lnside the conducting sphere, we have 
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Plasma model of the line dipole 
uniformly 
charged 
cylinder

Example: metal wire in applied uniform field

line dipole

(we used                            )

field outside plasma  line dipole field (use superposition principle to see why)

We will solve again the last 2 examples in a more formal way using the method of image charges
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Fundamental electrostatic property of good conductors (for examlpe metals): 

In a conductor with no flow of current (in “electrostatic equilibrium”):  

     Einside = 0  
This is so because if E  0, free charges would move, accelerated by the field, so there 
would not be equilibrium. Free charges accumulate in such a way as to make Einside = 0 
Notice that Einside = 0 only in electrostatics; if there is a current running through the 
conductor, then E is different from zero (it is in fact given by Ohm’s law, see topic 4) 
 

Consequences of fundamental property: 

- applying Gauss’s law  inside = 0 : net charge = 0 inside a conductor ; the charge 

resides entirely on the surface (where the surface charge density   0, in general) 

- integrating E  V = const: surface & volume of a conductor are equipotential; the 

surface is an equipotential surface; no E-field lines start at end on same conductor 

- (boundary condition)  Etangential = 0     just outside conductor. Hence just 

outside the conductor, E is normal to the surface 
- (boundary condition). The field just outside a conductor is proportional to the local 
surface charge density and orthogonal to the surface: 

  if r belongs to the conductor’s surface,  En(r) = (r)/ 0 

Electrostatic properties of conductors 

It can be shown that applying the averaging on the microscopic field equations, they 
remain valid for the average fields, so that indeed                        and

What does Einside inside = 0 really mean? 

Question for the class: apart from metals, which other systems fulfill  Einside = 0 ? 

In other words, which systems have charges that are free to move around? 

(hint: think about the 3 or 4 possible states of matter that you know of..)

A metal is actually made of ions and electrons; how can the charge density and the 
electric field be zero near a point-like charge like an atomic nucleus or an electron?? 
When we say E = 0 or  = 0, we mean an average, “macroscopic” quantities, namely 
the field or charge densities AVERAGED over distances that are large compared to 
atomic ones (  1Å). We denote the microscopic volume charge density by  and the 
microscopic (full-detail) field created by it as e. They fulfill:

The macroscopic charge densities and field are defined as: 

0E 0E

rerErr ;

In general, the spatial average of a function F(r) or F(r, t) can be defined as:

, where the sampling 

function f(r) is a function that is non-zero in a neighborhood of 
r = 0, and normalized to 1 over all space. Possible examples are: 



Boundary conditions with conductors 
What we did in the last lines of the previous slide is apply so-called boundary conditions, which 
are general electrostatic relations, to the case of an interface between a conductor & vacuum: 
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Capacitance and electrostatic energy 

Energy stored on a single conductor: 
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Capacitance 
 

The total surface charge on a single conductor far from other charges and conductors turns out 
to be directly proportional to the voltage we apply to it (we will show this in general later). It is 
then useful to define the capacitance of a conductor, as 
 

                                                                           C = Q/V  
 

Here Q is the total surface charge ON THE CONDUCTOR. 
If they carry equal and opposite charges, we can also define a capacitance for a set of two 
conductors (capacitor) 

SI unit of capacitance : C/V = F (Farad)  
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Applying Gauss’s theorem to       we get 
 

S 
it is either                   or  

Laplace’s law & Uniqueness theorem 

Call S S its boundary. Let’s suppose that there are 
 

two solutions              and             . Consider the field        defined as                                             

 
 

integral is zero only if at all points one has                              . But this implies that                  , that 
is, the two solutions are in fact the same.

If we have a set of conductors and for each of them we specify the potential V or the charge 
 

density                                             , then the solution to Laplace’s equation                       in the  
 

region between conductors is unique. 
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S is zero C

Application: capacitance of a conductor 
If a conductor is charged or a voltage is applied to it, it will exhibit a 
surface charge density and total surface charge given by 

Suppose that the potential of the conductor is v0, and that there is no other charge/conductor 
nearby. The potential infinitely far will be zero. The potential inside is constant and the field 
inside is zero. The potential outside V(r) is the solution to Laplace’s equation                  with the 
above-mentioned boundary conditions. Suppose we change the potential of the conductor to v1 
The potential everywhere V’(r) must be solution to Laplace’s equation and satisfy the new 
boundary condition. If we knew V(r) before, it’s easy to guess a new potential V’(r) that does the 
job: it is simply  
 
Since the solution is unique, this must be it. The new field will be                                    and the 
 

corresponding surface charge density and total charge:                                      
 

If instead of requiring the new voltage to be v1 we specify the new total charge to be Q1, we 
already have a solution: it is the one we just found, with the same voltage v1   
We see therefore that the form (dependence on r) of the surface charge distribution is unique 
for the given conductor, it only rescales with the total charge. We see also that Q is linearly 
proportional to v, that is, that Q/v is a constant C. This constant is called capacitance   
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Application 2: capacitance of 2 conductors 
Suppose we take 2 conductors, separated from everything else, and charge them with equal but 
opposite charges +Q and –Q. The potentials of the two conductors will be VA and VB , 
respectively (with VA > VB). Provided that the absolute value Q = Q of the charge is the same, 
we define the capacitance of the system as: 

For a given value of Q , the corresponding potential V(r) everywhere will be the solution of 
Poisson’s equation with the appropriate boundary conditions, which fixes the value of the 
surface charge density  at all points on the surface of the conductor. If we now rescale the 
function  by a constant factor, the value of Q  and of the potential will scale according to the 
same factor  the capacitance C of a system of two conductors having equal and opposite 

charge is really a constant, and we can treat it as such when solving electrostatic problems!  
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Here                                     is the potential difference between the two conductors 
 

The condition that the total charge on the two conductors is the same (apart from the sign) is 
easy to fulfill. For example, if a potential difference is established between two initially 
uncharged conductors by connecting them to opposite electrodes of a battery, then what the 
battery does is transport electrons from one conductor to the other. In other words, the two 
conductors will have at the end of the charging process equal but opposite charges.  
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Capacitance: exact calculation vs estimate 
- Calculation of C for the a single conducting slab, sphere or cylinder 

- Calculation of C for the planar, spherical and cylindrical capacitors 

Two possible approaches in both cases: guess the symmetry of E ; else, solve Laplace’s equation 
 

- Approximate estimate:  example: thin disk of radius b 
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If we have charges, dipoles, etc. outside a conductor, these external charges create, by 
themselves, a potential that is not uniform in the space occupied by the conductor. This 
potential, or field, induces a peculiar charge density on the surface of the conductor which 
together with the external charges generates a total potential that is constant (say, equal to V0) 
over the whole volume of the conductor, and that satisfies Laplace’s equation everywhere 
outside it except at the points where the external charges are located. The problem is to find 
the surface charge distribution that does the job. 
The image charge method is based on the uniqueness theorem, which states that there is a 
unique solution to Laplace’s equation with complete boundary conditions.  
The image charge method for conductors works this way: starting from the non-uniform 
potential created by external charges, we try to guess a fictitious, simple set of charges or 
dipoles that, if placed at specific position inside the conductor, render the surface of the 
conductor an equipotential surface, of given potential V0. If we succeed to do so, we’re almost 
done: the set of real external charges plus fictitious (image) charges together create a potential 
that fulfills the following requirements: it is equal to V0 on the conductor surface, and zero at 
infinity; it is a solution of Laplace’s equation everywhere outside the metal except at the points 
where the real external charges are located. From the uniqueness theorem, we then know that 
this potential is the (unique) solution to the initial problem. 
Since we now know the potential everywhere outside the conductor, we can calculate the field 
everywhere outside; we can then use the boundary condition on the normal component of E 
to find the surface charge density induced on the conductor. 

Image charge method for conductors 

Simple example of image charge I 
A point charge q lies a distance z0 above a semi-infinite (grounded) metal half-space. It induces a 
charge density on the planar surface of the metal. What is V in the region above the plane? 
Answer: the induced surface charge must compensate the effect of the external charge: the 
metal surface should be equipotential, but due to charge q it is not. Is there a simple way that 

we can make the surface potential to be everywhere zero? 

Since the solution for V is unique, the potential                            must be the true potential 
outside the metal for this electrostatic problem. Of course, we cannot put a free charge at rest in 
the middle of a conductor: the negative charge at (0,0,–d) is a fictitious IMAGE charge, a useful 
tool to determine V and E outside the metal. These fields (V, E) are really produced by the 
external charge and by the induced surface charge on the conductor, which is distributed in 
such a way as to give, outside the metal, the same field of a (fictitious) point charge!

Yes: if we put a charge –q a distance –z0 below the plane, then the 
surface is halfway between two equal and opposite charges, and it is 
straightforward to see that on such midplane VTOT = 0 :   

The potential                             satisfies all the conditions of the 
uniqueness theorem in the region outside the metal: 
- Outside the metal, VTOT satisfies Laplace’s equation                          
everywhere except at the position of the external charge; 
-                   at the metal surface; 
-                      at a point infinitely far from the external charge. 
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Simple example of image charge II 

What is the force on the external charge? Since the response field of the conductor is the same 
as that of a charge –q a distance –z0  below the plane, the force on the external charge is just 
the force which would produce the image charge (!!) : 

The image charge is just a useful theoretical tool: there can be no charge inside a conductor in 
electrostatics. What is then the real induced surface density on the plane? To calculate it, first 
notice that the total electric field at the conductor’s surface must be normal to it. Since such 
field can be obtained as the sum of the fields of two point charges, this is easily verified. In fact, 
we see that such field is simply  En = 2(Eext)z , where (Eext)z is the vertical component of the field 
due to the external charge at the metal surface. 
Since at a metal surface  = 0 En we then get: 
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Question for the class: how much is the force on the conductor? 

s

Other examples of image charges 
Point dipole outside a planar conductor 

Other example: point charge 

near an L-shaped conductor 

Question 1: For a general orientation of the dipole, how does the image dipole look like? Is 
there a net force and a net torque on the dipole? In there an equilibrium orientation? 
Question2: how are the image charges for a general charge distribution outside a metal plane? 



Conducting sphere in external E-field 
Induced charge density on a neutral conducting sphere in uniform external field E0 = E0 z . The 
external potential due to E0 is Vext = – E0 z. The zero of z is arbitrary; we take z = 0 in the sphere’s 
center so that on the sphere’s surface at a radius R0 we have Vext = – E0 z = – E0 R0 cos   . This is 
clearly not uniform on the conductor’s surface; we need to find a set of image charges in the 
region occupied by the sphere such that the total potential VTOT = Vext + VIMAGE CHARGE is constant 
and = 0 on the sphere surface. It’s easy if we remember that the potential of a (image) point  
 

dipole p centered in the origin is                  (p is parallel to z). The total potential is  
 

                                        , which is zero if 
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The induced charge density is found from the boundary condition 
 

Since the total field is the sum of the external field and the field of the image dipole, we get: 
0
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Question for the class: how much is the force on the sphere? How much is the torque? 

sphere and a dipolar field outside. If                              , then     

000 3 Ecos0

Such a distribution must create a constant field equal to E0 inside the sphere, so that Etot inside: 

 
This result is very important and we will use it in several occasions (it is also on the formula list): 
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We saw in the previous slide that the induced charge density is                            with 

Field of a spherical surface charge  cos

Exercise class: what happens if the sphere is at a potential V  0 or carries Q  0? 



Conducting cylinder in external E-field 
Induced charge density on an infinite neutral conducting cylinder (wire) of radius R0 in uniform 

orthogonal external field E0 (the cylinder axis is the z axis and the field is parallel to x). The 
external potential on the cylinder surface is V0 = – E0 x. We take x = 0 on the cylinder axis so that 
V0 = – E0 x = – E0 R0 cos   . Note that now the angle  is in cylindrical coordinates (and not 
spherical coordinates as before). The suitable image charge is now a line dipole  extending on 
the cylinder’s axis (parallel to z). The resulting total potential on the cylinder surface is  
 

                                             , which is zero if 
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The induced charge density is found from the boundary condition 
 

We get in this case: 
0
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Just as for the sphere case, this induced surface charge density must create a field equal and 
opposite to E0 in the whole region occupied by the cylinder. Hence we find an important result 
for the field of a cylindrical surface charge proportional to cos  (in cylindrical coordinates): 

A cylindrical surface charge density proportional to cos generates a constant field inside 

the cylinder and a line-dipole field outside. If                              , then     cos0
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Dielectrics and polarized media (TOPIC 2) 
When dealing with insulators (dielectrics), one usually wishes to calculate: 
1) the field produced by a polarized dielectric 
2) the effect of an applied field on a dielectric 
Basic idea: a dielectric may be represented by a collection of point dipoles: 

Even approximating the atomic distributions as point dipoles, it’s impossible to take into account 
all of them (there are of the order of NA 1023 atoms/cm3 cube in a liquid/solid sample), let 
alone their mutual interactions. More than individual dipoles, we should consider the average 
dipole moment of a solid. We thus define the POLARIZATION of the material or medium as: 

 
Similarly, instead of calculating the local electric field on atomic scale, we should calculate an 
average, macroscopic electric field due to all the dipoles. This can be done with the concept of 
bound charge. Take for example a rectangle of atoms that have dipole moment parallel to two of 
the rectangle’s sides: 

As you can see in the figure, the end of a dipole (+ 
charge) is close to the start of another dipole (– charge) 
at all points inside the rectangle, so that the average 
field of due to both charges is zero. This is not true at 
the surface, where there are “uncompensated” 
charges. These charges, called BOUND CHARGES, 
produce the E-field inside and outside the sample 
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A dielectric only carries a net charge if YOU charge it (by rubbing, ion bombardment, etc.)

Polarization field

The procedure suggested in the previous slide is possible in general. As mentioned, a polarized 
material may be considered as a collection of point dipoles, and whose volume density is the 
polarization field: 

 
Each elementary volume         of the material has thus an elementary dipole moment 
What is the E-field produced by a polarized object? For a point dipole we have 
Hence for a continuous collection of dipoles each at position     :  

Fundamental theorem of polarized media 

 (since                             ) 

Integrating by parts                                                 and using the divergence theorem: 

The last equality may be written as: 

Here we have defined                      and                          (surface/volume “bound charge density”)  

the electrostatic potential and field produced by a polarized medium 

of polarization P is the same as that produced by a volume charge 

density                            plus a surface charge density   
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Physical meaning of bound charges 
What is this “bound charge”, and what is the difference with the charge in a conductor? In an 
atom one distinguishes between core electrons and valence electrons (those in the outer shell); 
when atoms form a solid, they share their valence electrons: in some solids (“metals”) these 
electrons can move freely from one atom to the next; in others (“dielectrics” or “insulators”) 
valence electrons are tightly bound to a single atom or bind together two atoms. In the first 
case, the valence electrons are free charges, in the sense that they can move anywhere; in the 
second, they are bound charges, in the sense that they cannot be separated from the atom or 
pair of atoms they are linked to. Bound charges can only move slightly with respect to the 
nuclear charge they are bound to in an applied field; this is what we call “induced polarization” 

Notice that even in an insulator there can be free charges, for example if it has been electrized: 
in fact, an excess or lack of one electron on a site is a free charge that can move about, if all 
other sites are neutral (think about what happens in a semiconductor). If there are no free 
charges, but only bound charges inside dipoles, then the material carries no net charge, that is, 
it is neutral:  

         is a macroscopic field 
The polarization field       is an average, “macroscopic” field. We may see it by rewriting it as: 
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We see that      is equal to the number density of atoms                   times the average electric  

 
dipole moment per atom, given by                          . Since                           and                        , we  

 
see that the bound charge densities           and           are average, macroscopic charge densities 
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It is precisely because we are considering 
averages that we can say, for example in the 
case of uniform polarization, that the bound 
charge at the end of a dipole (+ charge) cancels 
out exactly the bound charge at the start of 
the dipole next to it (– charge). 
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(The SI units of P are the same as those of a 
surface charge density, namely  [P] = C m–2 )



If da is a part of the surface of the dielectric, dQacross will correspond to a surface bound charge. 
 

The surface bound charge density is                                                 (this proves part of the theorem) 
 
If instead da is part of the closed frontier S of a volume dV, then 
 

Since charge is conserved, the charge crossing S is the charge leaving V: 

“physical” proof of the fundamental theorem 

daPdQ nacross

Consider a small area da at the boundary or inside a dielectric. When the dielectric becomes 
polarized, positive and negative charges are separated by        and some charge dQacross will cross 
da. The atoms that cross da are those that lie at a distance             of da, where                     is the 
component of       normal to da. dQacross is the number of atoms in the volume                     , 
multiplied by the charge q, that is: 
 

                                           (na is the atomic density) 
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nqnaSince              is the normal component 
of the polarization field, we get:

Comparing the last two equations for Qacross we see that Pb
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Exercise: verify that Qb = 0 

Exercise: calculate V & E on 
cylinder axis inside & outside 



Uniformly polarized sphere of radius R0 

We already encountered this surface distribution when 
solving the problem of a conducting sphere in an applied 
field. We know (see also the formula list) that generates a 
uniform field opposite to P inside the sphere and a dipolar 
field outside:   
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   there exist two 
types of dielectrics:

Ferroelectrics (spontaneous intrinsic polarization)

Linear dielectrics (induced polarization)

The quantity                        is called relative permittivity. We thus get:

Linear dielectrics 
A linear dielectric is one in which the polarization is directly proportional to the macroscopic 

(average total) electric field inside the sample:    P = 0  Emacro  
The constant of proportionality is 0 times a pure number,  , called ELECTRIC SUSCEPTIBILITY 
This equation is only apparently simple, because the macroscopic field is itself an unknown, and 
depends on the polarization P! To see it, let’s consider a typical problem: a piece of linear 
dielectric material in a uniform applied external field Eext . We want to find P as function of Eext. 

It is tempting but WRONG to write P = 0  Eext , since the macroscopic field is NOT equal to Eext . 
We need to be more careful. 

ext

In the present case we find: 

The proportionality factors we found are NOT general, they depend on the dielectrics’ shape  

(only true for a uniformly polarized infinite slab) 
Hence from the definition of linear medium we get: 
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Example: dielectric in the shape of a very thin disk or slab 

Let’s assume that the induced polarization is parallel to the applied field and 
constant (we try and see if it works). The polarization creates a field (called 
depolarizing field) which may be calculated from the bound charges (two 
(quasi-infinite) sheets with uniform and opposite surface charge density  
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Let’s assume that the induced polarization P is uniform. Then 
there is no bound volume charge, but only a bound surface 
charge:                                        . We therefore get: 

But then the relationship                                                                     cannot hold, since P and Eext are 
uniform, but Edepolarizing isn’t! (Another way of seeing this is calculating graphically the total field 
Eext + Edepolarizing and noticing that it is not parallel to P). Hence our initial assumption that P is 
uniform is wrong !! The problem of finding P for an arbitrary shape is complicated. 

Cylinder of linear dielectric material in Eext 

IMPORTANT: the trick of assuming that he induced polarization is uniform does not always work 
In fact it almost never works! For example take the same cylinder under an applied axial E-field: 

If we assume that P is uniform, 
then the depolarizing field 
would be that created by two 
disks, which is not uniform. 
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Exercise: what happens in this last case if the cylinder is very long & thin (needle-like)? 
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It follows that the field equations for D are:                                  & 

. Using                           , we can write Gauss’s law as

Displacement field (D) 
Many problems with dielectrics involve also free charges, both outside (external charges) and 
inside the dielectric. (An external field acting on a dielectric may be caused by a set of free 
external charges in vacuum or on conductors nearby the dielectric. On the other hand, a 
dielectric may contain free charges if it has been electrized , for example by rubbing it or 
bombarding it with ions or with electrons.) In a typical problem with dielectrics and conductors, 
for example, the polarization is initially unknown; however also the distribution of free charge 
on the conductors is then not known in general, since it will be affected by the polarized 
dielectric. This complicated problem may be simplified by introducind an auxiliary field D, 
defined as follows. First, consider that in such a problem the total macroscopic field E is 
generated by both free and bound charges. Hence: 

{NOTE: “extra” charges inside a dielectric are free charges, since although they move slowly, they are not 
bound to an equal and opposite charge: if an atom of the dielectric is ionized by adding an electron, this 
extra electron can jump to any neighboring atom and thus move through the material without an associated 
positive charge moving with it (it is then a free charge). The same happens when the ionization occurs by 
loss of one electron: if an electron from a nearby atom fills the vacancy, it leaves another vacancy behind, 
hence in such case there is a positive free charge (called vacancy or hole) moving freely in the material.} 

We define the (macroscopic) D field as: 
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SI units of D = units of P = C/m2 



In a linear dielectric, the polarization is directly proportional to the macroscopic field E inside 
the medium:

Linear dielectrics and dielectric constant 

EP el 0

r

elr 1  : relative dielectric constant or relative permittivity

r

rmaterial 

The equation linking D and E is called constitutive relation

EEEED r 0000 )1(

IMPORTANT:  in a perfect metal there are no polarization effects, hence 
 

           and                 , just as in vacuum. In other words, r = 1 in a metal 0P ED 0

 dimensionless numberr

Example: a linear dielectric in a capacitor 
Linear homogeneous dielectric inside a parallel plate capacitor held at a potential difference V  
By symmetry, the free charge density on each plate is uniform. Hence it is straightforward to 
determine D from Gauss’s law for D : 

For V we have 
 

Hence V = f d/ r 0 . If the capacitor has total 
area A, then f = Qf /A , where Qf is the total 
free charge on one plate. Hence: 
V = Qf d/(A r 0), or:  C = Qf /V = r 0 A/d 

The capacitance increases from its value C0 = 0 A/d when the 
capacitor is empty, to the value C = r C0 when the capacitor is 
filled with dielectric. Why is the capacitance higher? 
The physical cause of this is the depolarization field, or if you 
prefer, the bound charge density at the surface of the 
dielectric, which effectively reduces the magnitude of the 
total E inside the dielectric, so that more free charge is 
needed to obtain the same voltage across the capacitor. 

From these results we can calculate also everything about the dielectric, 
namely P and b
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f 

b 

Question for the class: why can 

we neglect the other eq. for D? : 

The boundary condition for E yields tot = f / r 
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Boundary conditions&charge in dielectrics 

or 

ED r 0

for a homogeneous medium 
totrf

02211 ˆˆ nEnE 

Simple relation (only valid at the interface of a conductor with a linear dielectric)  since inside 
D = E = 0, and outside both fields are normal to the surface, we have:  
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totrfED r 0 only at a conductor’s surface!! 

 

Poisson’s law in a homogeneous medium then becomes 

 
Hence if a homogeneous dielectric is not charged ( f = 0), Laplace’s law                    holds 
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We’ll use the same tool (boundary conditions) also in other topics, for other interfaces & fields 

Problems with 2 dielectrics in capacitors 
2 types of problems: 
(a) highly symmetric, with the separation between media running orthogonal to E 
(b) Less symmetric, with the separation between media running parallel to E 

IMPORTANT: in the definition of the 
capacitance C, Q is the total charge    
on the metal, that is, the free charge :  

V

Q
C

f

Strategy for case (a): guess the symmetry of D and f ; calculate the relation between D and Qf , 
then apply constitutive relation to find E; integrate to get V as function of Qf  (whence C = Qf/V)  
 

Strategy for case (b): study the boundary conditions for E to guess the symmetry of E (which will 
be the same as that of the empty capacitor); get V and the total surface charge density ; hence 
apply constitutive relation to find D, and from there get f and Qf  to obtain the expression of C  apply constitutive relation to find D, and from th



Here                                  is the total potential due to both free and bound charges.  
 

The first integral is over the volume that is NOT occupied by the conductors, since f = 0 inside a 
metal. The second integral is over the surfaces of the conductors. Using                           in the 1st 
 

integral and                         in the 2nd (which is valid at a metal surface since D = 0 inside) we get, 
integrating by parts: 

Electrostatic energy with linear dielectrics 
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The electrostatic energy for a set of 
conductors and LINEAR dielectrics is:

fD
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The first term in U is the volume integral of a divergence, which due to Gauss’ integral theorem 
is equal to the flux of the product (V D) through the surface delimiting the volume in between 
conductors. But this flux is exactly equal to the last term in U changed in sign (since the direction 
of the normal vector is inward the metals in the first case, outward the metal in the second 
case). Hence we get:                                  
 
We can write our result in terms of the energy density uel , defined as: 
We find: 

EDdU
2

1

eludU

2
0

2

1

2

1

2

1
EEDVu rfel

surfaces

f

volume

f )rV()r(dA)rV()r(dU
2

1

2

1

Force on metal surfaces and on dielectrics 
Since electrostatic forces are conservative, one way to calculate them is as gradients of the 
electrostatic energy. This is particularly useful in the case of a capacitor, whose electrostatic 
 

energy is simply:                 . Consider for example a parallel plate capacitor.  
 

The plates carry opposite charge and are therefore attracted to one another. We can calculate 
the attractive force on one of the plates using the following method: take one of the plates to be 
fixed and the other one to be mobile, and take the total charge on each one to be constant (that 
is, the plates are electrically isolated). Because of energy conservation, the work done by 
electrostatic forces to pull the mobile plate by a distance dx must equal minus the variation 
 

of electrostatic energy of the configuration. In other words, the force is simply:                            . 
Since the charge is constant, this can be written as: 
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Although we calculated this force assuming that we were holding one of the plates fixed and 
maintaining the free charged fixed as well, the electrostatic force is determined entirely by the 
distribution of charge, free and bound. In other words, it cannot possibly depend on how you 
plan to measure it, whether by keeping one plate fixed or not, or whether they are connected to 
a power supply instead of being isolated. Therefore, the formula that we found is actually 
always true. Moreover, if instead of considering a moving plate we consider a dielectric that only 
partially fills the volume of a capacitor, the same formula applies, and in such case it gives the 
force on the dielectric ! (see next slide)



the electrostatic pressure is thus equal to 
the electrostatic energy density,                 !

Electrostatic force and pressure 
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This results suggests defining an “electrostatic pressure” on the conducting plates as  

For example, for a parallel plate capacitor completely filled with a dielectric of relative 
permittivity       , if the plates are separated by a distance x we have we have 
Hence we get:  x
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Other example: a dielectric is partially 
inserted in a parallel-plate capacitor. 
In terms of x (length of empty portion 
of the capacitor), the capacitance is: 
 
 
Hence: 
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We saw in the previous slide that the force in a capacitor is

dielectric

rrr x
d

b

d

b

d

xb

d

xb
C 10000

b

x

2
0

2
0

2 V1
2

1
V1

2

1
V

2

1

d

b

d

b

dx

dC
F rrel Applications: 

-electrostatic levitation 

-polymer patterning

Case 1: dilute apolar gas In a gas the atoms or molecules are relatively far from one another, so 
that we can consider that the field they produce does not affect other atoms. Hence 
 

Then, with               :  

The field Elocal felt by an atom of a dielectric is the sum of the external field Eext and the field of 
all other dipoles. In the simplest case, the field Elocal felt by each atom is the same, so that the 
induced microscopic dipole moments are all equal and given by p = Elocal . The macroscopic 

r and : 

Microscopic theory of r for linear media 

Case 2: dense apolar liquid/solid

In condensed matter Elocal differs considerably from the applied external field and also from the 
macroscopic (average) field Emacro inside the dielectric. We use the following approximation: we 
take Elocal to be equal to the macroscopic field inside the dielectric plus the field produced by the 
walls of a small spherical cavity carved inside the polarized dielectric, which is assumed to have 
a locally uniform polarization P. The field due to the cavity walls is generated by the bound 
charge density, which goes like cos ; hence such field is equal to +P/3 0 (and is parallel to +P). 
 

Therefore:
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The Clausius-Mossotti relation holds for liquids, glasses, and cubic crystals. It reduces to case (1) for r 



(1) Electronic 

Mechanisms of induced polarization 

substance water methanol ethanol 1-propanol 

molecular 
formula 

H2O CH3OH CH3(CH2)OH CH3(CH2)2OH 

r 81 34 26 22 

pextE

+ 

– extEp

pnPIf all microscopic dipole moments (induced or permanent) are identical,                . In the case of 
permanent dipoles, p r, are largest when n is largest.

extE

The dipole moment & intermolecular 
interactions of water and alcohol is 
determined basically by the O-H 
group and by the H-bonds which it 
forms. P and r are largest for largest 
density of dipoles and of H-bonds: 

(3) Orientational (permanent dipoles):

substance CHCl3 C6H5Cl C6H5NO2 

r 5.1 10.3 36.5 

substance N2 C2H4 C6H6 polystyrene diamond 

r 1.0006 2.24 2.28 2.5 5.7 

extE + – 

extEq'extEq

NaCl

substance KCl NaCl CaCO3 PbO 

r 4.8 6.0 6.1 26 

(2) Ionic 

(4) H-bond network dynamics (hydrogen-bonded systems – see TOPIC 6):

Ferroelectric materials & applications 

high-T structure: 
Perovskite lattice 
low-T: Ti4+ ion no 
longer fits in the 
octahedron of O2– 
ions & moves to 
off-centered site 

 dipole moment 

Left: Spontaneous polarization of a 
ferroelectric crystal 
Middle:  voltage across material is lowered 
upon compression 
Right: Elongation of material is obtained 
applying an external potential

These materials are usually piezoelectric : 
(used in atomic microscopes, microphones, energy harvesting devices, …)

BaTiO3 capacitor, 
top and side view. 
It can store 1000 
more charge than 
a normal capacitor 

ionic insulators       r = 5  10 
 ferroelectrics         r = 103  104

Ferroelectrics: BaTiO3, PbTiO3, KNbO3, LiNbO3 

Ca2+ or Ba2+ or Pb2+

Ti4+

O2–

(Tc = 120 C) 



Microscopic interactions in dielectrics I 

- charge-charge (example NaCl): 
The force is given by Coulomb’s law  
interaction energy: 
 
 
- charge-dipole: 
The direction of the force can be found graphically:  
(by Newton’s 3rd law the forces are equal and opposite) 
Interaction energy (both expressions are equal since                ) 
 
 
 
 
 
- dipole-dipole: 
as between 2 charges, F is attractive (a) or repulsive (b) : 
Interaction energy: 
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Microscopic interactions in dielectrics II 

  connections with solid state physics course 
- Madelung sums in ionic and van der Waals solids  COHESIVE ENERGY 
- Average effect of interactions  ELECTROSTATIC SCREENING. Example: force on a point 
charge embedded in a dielectric 

In all cases, including those of the previous slide, a repulsive potential must be added at short 
distances, since molecules and atoms cannot overlap (Pauli exclusion principle). The form of the 
repulsive potential is empirical or chosen for mathematical convenience. An example of 
potential energy used in van der Waals solids of neutral apolar molecules is the Lennard-Jones 
potential (the repulsive term is here chosen to simplify calculations): 
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- charge-induced dipole: p  ES  1/r2 . The potential due to the induced dipole goes like p/r2 
Hence U q p/r2  1/r4 and it is attractive: U = – C4 /r4   (with C4 > 0) 
 
- permanent dipole-induced dipole, p  ES  1/r3. The potential created by the induced dipole 

scales as p/r2  1/r5 , hence its field goes as  1/r6 . Since the energy of a dipole in an electric 
field is the product between p and E, U = – C6 /r6  (with C6 > 0) 

 

- instantaneous dipole-induced dipole: force between 2 neutral apolar molecules!!  U = – C6 /r6  
Attractive forces between neutral apolar species are called London or Van der Waals forces. 
Classically, they arise from fluctuations of the atomic charge resulting in instantaneous dipoles, 

but they are really a quantum effect, due to vacuum fluctuations of the e.m. field  

With induced dipoles (apolar molecules)  p ES   (ES  field due to nearby molecule(s)) 



Importance of SPIN in physics 

From the magnetic point of view, each spin is a little magnet. Since the electronic spin is the 
largest one, but also because electron spins are much more correlated than nuclear spins, the 
magnetic properties of materials basically stem from the magnetic dipole of their electrons. 
The electronic magnetic moment in an atom (especially for heavy elements, which are those for 
whic magnetism occurs) is not really proportional to s, but to j = s + l , where l  is the orbital 
quantum number (this is due to the so-called spin-orbit coupling: see quantum physics course) 
 

We will see soon that a magnetic material can be described as a collection of “spins” (or  j 
moments), and as such we will study them in a fashion similar to that employed for polarized 
dielectric. We will also see that magnetic interactions in a magnet, for example, is really of 
electrostatic origin. These two characteristics of magnetic materials justify discussing magnetic 
materials at this point of the course; not to mention that historically the first scientific 
description of magnetism came well before the description of currents. 
Before we go into all that, however, let’s start by first looking at the magnetic field of a single 
electron, and at the effect that a magnetic field has on a single spin.  

Magnetic materials and magnets (TOPIC 3) 

Force, torque & energy for a magnetic dipole 
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To perform experiments with magnetic poles “qm”, it suffices to take a magnet in the form of a 
long rod: the north and south poles are then sufficiently far that they can be made to interact 
separately with other “poles”. In this way Coulomb actually demonstrated the existence of a 
magnetic force between poles that goes like the inverse square of the distance, just like 
Coulomb’s  force between point charges. However, while there exist isolated charges (electrons, 
protons,..), isolated magnetic monopoles do not exist: if you break a magnet in two, you get 
two magnets each with a south and a north pole, so that the net pole is always zero: in this 
sense magnetic poles display similar features with bound charges in dielectrics. 
The fact that there are no magnetic monopoles has a major consequence: electrostatic fields 
start at positive charges, end at negative charges and are conservative; instead, magnetic fields 
don’t start or end at any point (at most at infinity), since there are no monopoles: magnetic 

fields are are solenoidal. This is the key feature we will exploit to find the field of a magnet.



The magnetic dipole (spin) field 
Like an electric (point) dipole produces the E-field                                                           , a magnetic 
dipole (spin) generates the B-field: 
 
 
Formally, such field is conservative: we can write                                              with  
 

However, we know that B is not conservative but rather solenoidal. In fact what happens here is 
that the singularity at r = 0 masks the solenoidal character of the field: 
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  While electric-dipole interactions play a dominant role in polar dielectric materials,  

magnetic-dipole interactions are too weak to be the source of magnetism (e.g. in iron)  
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 proof: 

Vector potential for a magnetic dipole 
We want to prove                                      , with                                     . For this purpose, we need the 
 
following vector identity: if       does not depend on      ,  

Proof that B can be obtained from a vector potential: 

Hence for            , 
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http://physicspages.com/pdf/Griffiths%20EM/Griffiths%20Problems%2005.33.pdf



What is the B-field produced by a magnetized object such as a magnet? We cannot calculate it 
using the pole density as source of B as the bound charge was the source of E, because 
otherwise we would get a conservative B that starts at north poles and ends at south poles. This 
would contradict the solenoidal nature of B: the field lines of B go around in closed loops, they 
never start nor end. The way to get a solenoidal field is to start with the vector potential A of 
the magnet and then taking its curl:                                     . This guarantees that  

Magnetized media 

i

N

i mM
1

magnetmagnet AB

A magnetized medium is a collection of magnetic dipoles. We cannot deal with all magnetic 
dipoles in a sample (the total number of spins is that of unpaired electrons, which is of the order 
of the number of atoms, or Avogadro’s number). We therefore define a MAGNETIZATON FIELD 
as the average magnetic dipole moment per unit volume: 

Hence an elementary volume         of a magnetized sample carries an elementary magnetic 
dipole moment equal to:                        . Just as we did in the case of polarized dielectrics in topic 
2, let us define the POLE DENSITIES associated with the magnetization field, as: 

d
dMmd

Mm
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Volume POLE DENSITY 

Surface POLE DENSITY 

The sign of the magnetic poles can be positive (north pole) or negative (south pole). (A magnetic 
dipole moment goes from south to north, that is, from – to + like an electric dipole). These 
definitions are consistent with our experience that a bar magnet has a south and a north pole. 

Magnetization field

M NS

0magnetB

SI unit of m : A m2   unit of M and m : A/m ¿Why does the ampere (A) appear here?  topic 4 

Fundamental theorem of magnetized media 

. Therefore, taking the curl: 

We have obtained:                                      , where                                                          is the total 
scalar potential of the magnetized object. 
Integrating by parts, it is straightforward to show (see fundamental theorem of polarized media, 
topic 2) that the scalar potential can be re-written as: 

 
Here we have used the previously given definitions of surface and volume pole densities. 
Thus B can be obtained indirectly with the help of a conservative “auxiliary” field H:   

00MB

We know that for a single magnetic dipole the vector potential is 
 

Hence for a continuous collection of dipoles (magnetized object) each at position r’ one has:  

3
0

4 r

rm
A

dipole
magnetic

VolVol
rr

rr
rMd

rr

rr
rmdAdrA

3
0

3
0

||
)(

4||
)(

4
)(

33
0

3
0

||||
)(

4||
)(

4
)(

rr

rr
M

rr

rr
rMd

rr

rr
rMdArB

3
0

03
030

||
)()(

4
)(

||4
)(4)(

4 rr

rr
rMdrM

rr

rr
MdrrrMd

3||
)(

4

1
)(

rr

rr
rMdr

33 ||

)(
)(

4

1

||

)(
)(

4

1
)(

rr

rr
rad

rr

rr
rdrH mmHMB 0

with

d
rr

da
rrrr

rM
dda

rr

nrM
r

V

m

S

m

VS 4

1

4

1)(

4

1ˆ)(

4

1
)(



the magnetic pole density consists of two disks of 
uniform charge density at both ends of the rod. 
The H field has the same form as the E-field 
produced by two charged plates. The B field, which 
is what we want to get as it determines magnetic 
forces, is then found as   

Problems with magnetized media 

 the black lines are the lines of H (or E) 
The white lines inside the rod and the 
black lines outside it are the lines of B (or D) 
(outside, that is, in vacuum,                      ) 
Notice how the LINES of B FORM CLOSED LOOPS 

Example: bar magnet 

MHB 0

HB 0

SI unit of m : A m2  

SI unit of M, H and m : A/m
¿Why does the Ampere (A) 
appear here?? see topics 4 & 5 

+ m– m

M

Strategy: 
(1) from M, find the magnetic pole densities                            and  
(2) from m and m, calculate H as you would calculate E (without the factor 0 ), using:  

 
 
(3) From M and H, calculate B as 
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(or calculate        as you would 
calculate V, and then compute 
the auxiliary field as                     ) H

Application: B-field of a spherical magnet 
Spherical magnet = uniformly magnetized sphere 
Since M is uniform, the volume pole density is zero: 
The surface pole density of a uniformly magnetized sphere is: 
It acts as source of H (equivalent electrostatics problem: uniformly polarized sphere) 
We already know how to calculate the (H) field of a surface density proportional to cos : 
 

- outside the sphere the field H is a dipolar field      
  

with the magnetic moment                        placed in the sphere’s center 
 

- inside the field H is uniform (as the E field inside a polarized sphere) and equal to 
The magnetic field B (which is what we are interested in) is then:  

cos)(ˆ)( MrMnrm

35

3

4

1
)(

r

m
r

r

rm
rH

VolMm

3

M
H

inside
3

2
;outside

3

4
)( 035

0 MB
r

m
r

r

rm
rB

H
B

0Mm



Field equations and boundary conditions 
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Application of boundary conditions 
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Field equations for the auxiliary H field: 

mMHB 0

0H

B is solenoidal :
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B is the same inside 
and outside the 
magnet:

Permanent-magnet magnetic circuit  

If the magnitude of M is constant, and the field lines of M are always parallel to the sides of the 
magnet, then there are no volume poles:                                   . The only magnetic pole density is 
a surface density, present at the air gap: MnMm ˆ
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This surface pole density acts as source of H as a charge density of 
identical geometry, such as the one present in a parallel-plate capacitor, 
generates an electrostatic field E. In the limit that the air gap size g is 
much smaller than the linear dimension d of the magnet’s cross section, 
the planar symmetry approximation can be applied, so we have: 

– 
– 
– 
– 
– 
– 

+ 
+ 
+ 
+ 
+ 
+ 

00

g 

ˆ
gapin the,ˆ

magnetin the,
0

00

0

0 x
xMH

M
HMB m

Therefore:

xB m ˆ0



Magnetic force at the air gap 

We know from Coulomb’s experiments that a magnetic field exerts a force on a magnetic pole, 
given by                              , much in the same way as there is a force due to an electric field 
applied to a charge:                      . In the case of a parallel-plate capacitor, the force on a metal 
plate is given by 
 
Here E is the total electric field in the capacitor, and the factor ½ is introduced to avoid including 
the field due to the charge on which the force is exerted. We see that the electrostatic pressure 
pushing the plates together is equal to the electrostatic energy density 
 

One could argue that the same result should apply to the air gap in a magnetic circuit, namely: 
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We will see in topic 5 that                 is indeed the energy density associated with magnetic fields.  BH
2
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 for the class: ¿Why didn’t we consider the simpler case of a uniformly magnetized thin slab? 

there are two types 
 of magnetic media:

Ferromagnets 
(& antiferromagnets)

Linear magnetic media 
(induced magnetization)

     Paramagnetic media 
(analogous to linear dielectrics)

Diamagnetic media 
(no dielectric analog exists)

Most materials are non-magnetic or show only weak magnetism as a (linear) response to an 
applied field. Few materials, for example magnetite Fe3O4, show strong magnetic properties: 
these materials are the ones used as permanent magnets (in Spanish, “imanes”) 
 

In the case of linear magnetic material, we will be interested in the magnetization that arises 
when a linear magnetic material is placed in an applied field. A linear magnetic material is one in 
which the magnetization is directly proportional to the macroscopic field inside the sample. To 

keep the analogy that we have been using, a linear magnetic medium is such that: 
The constant of proportionality is a pure number, m , called MAGNETIC SUSCEPTIBILITY 

Since           , we then get                                                         , where we defined the  
 

RELATIVE PERMITTIVITY as 
 

As for the electric case, these equations are only apparently simple, because the macroscopic 
field H is itself an unknown and depends on M. 
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Magnetic materials 
(spontaneous intrinsic magnetization)



Analogy of magnetic & dielectric media 

HHB rm 00)(1HHM rm 1

Problems with magnetized media can be solved as those with polarized media by substituting: 
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Notice the analogies 
Between the B and D 
field equations 

Mathematical 
equivalence of the 
H field produced by 
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Note also the analogies 
between the equations 
for linear materials: 

EEP re 00 1 EED re 001

The similar effect that E and B have on dipoles (whether electric or magnetic), together with the 
analogy between magnetized and polarized systems, suggest that we may also write the energy 
of a set of linear magnetic objects in a magnetic field as:  
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Linear magnetic materials 

As for the dielectric case, these equations are only apparently simple, because the macroscopic 
field H (which is a priori unknown) depends on M. 
 

Example: a sphere of linear magnetic material in an otherwise uniform external field Bext . Since 
in vacuum B = µ0H, this is the same as saying that the sphere is in uniform applied Hext = Bext/µ0 . 
To find M as function of Hext., we assume that the induced magnetization is parallel to Hext and 
constant . The magnetization creates a surface magnetic pole density which itself generates an 
H-field which may be calculated from the pole density, proportional to . We get: 
 
             . Hence                                                 , or: 
 
              . Hence B outside is µ0Hext plus a dipolar field, while inside 
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In many cases (especially for diamagnetic media, but also for several 

paramagnetic materials), m is very small, so that basically µr  

Paramagnetism    ,             Diamagnetism  m  m > 0 1r
1r



Magnetic susceptibility and permeability: some examples 

m is usually quite small, so that basically µr  

m 
diamagnetic 
substance 

Paramagnetic 
substance m m 

compound 

Origin of paramagnetism ( m > 0)  alignment of unpaired electron spins (unpaired magnetic 
dipoles) of medium with applied field  equivalent to orientational polarization in dielectrics 
 

Origin of diamagnetism ( m  response of electron pairs with total spin zero to an applied 
field : it can be thought to be due to Faraday & Lenz’s laws at the atomic scale (see topic 4)  
there exists no dielectric equivalent of diamagnetic materials 

Diamagnetism vs paramagnetism 

Question for the class: how will a paramagnetic or 
diamagnetic bar orient in an applied field, and why?  

Saturation magnetization 
(paramagnetic & ferromagnetic materials) 

The value of the microscopic dipole moment is fixed, for a given material, and determined by 
the electronic orbital configuration:  m is proportional to j = s + l  (total moment = spin+ orbital 
moment, see Quantum Physics course, spin-orbit coupling), which is fixed for a given electron. 
(notice that this is different for the electric case, where there is in principle no theoretical upper 
limit for the value of pinduced as one can pull two bound charges further and further apart) 
For a ferromagnetic material, the maximum total magnetization is when all magnetic dipoles in 
the sample are aligned in the same direction. 
For a paramagnetic  material  the linear relationship between M and H can’t hold for large H, 
since there is a maximum possible magnetization, corresponding to all magnetic moments 
aligned in the same direction. This implies that the magnetization curve is linear at low H, and 
then levels off at high H (high applied B field): 

paramagnetic materials 
are different from linear 

dielectrics, in which there 
is no theoretical upper 
limit for the induced 
polarization field P 

mnM sat

saturation magnetization:  

(n = atom number density)



Gas- vs condensed-phase magnetic media 
The class of (non)linear magnetic media is more varied than that of (non)linear dielectrics. 
Among linear media, there are materials with                              , that are called paramagnetic 

and that are analogous to linear dielectrics; but there are also materials with                             , 
called diamagnetic, and whose magnetization is opposite to that of the applied field 

Low Temp. : nonlinear behavior (ex. ferromagnetic) 

  gas 

state 

solid 

state 

High Temp. : PARAMAGNETISM 

 Pauli paramagnetism:

)1(0 rm

)1(0 rm

- closed shell configuration: 

     (example: full octets)  

-  open shell configuration 
 (rare: open shell atoms 
react to form molecules) 

 PARAMAGNETISM 
        example O2 :

 DIAMAGNETISM 
 examples: H2, noble gases

0m

0m

- Materials with only s or p valence electrons 

Metals:Insulators:
 DIAMAGNETISM 

0m

- Materials with d or f valence electrons: 

without 
applied B :

with 
applied B :

Microscopic magnetic interactions 
Nonlinear magnetic media: Just like the class of linear magnetic media is more varied than that 

of linear dielectrics, the behavior of nonlinear magnetic media displaying spontaneous 
magnetic ordering is also much richer than that of ferroelectric materials.  

 
- Mechanism of interaction: exchange coupling  
 
- Magnetic behavior: transition from a high temperature phase (usually paramagnetic) to a 

low-temperature phase with long range magnetic correlations (ferromagnetic, antiferrom., 
ferrimagnetic, spinel order, Kondo state, incommensurate phases…  

   phase transitions (e.g. para-ferro) 
 link with statistical physics course 


