
Steady currents & magnetism (TOPIC 4)

I. Definition of current and current density, charge conservation, boundary condition for J 

II. Batteries and fuel cells 

III. Ohm’s local law and calculations of resistance ; Joule’s law 

IV. B- and H-fields generated by steady currents inside or near magnetic materials 

V. Magnetic circuits 

VI. Ampère’s equivalence theorem: superconductors ; magnetic dipole of current loops 

electrostatics
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All phenomena described so far concerned charges at rest; we now move on to charges in 

motion. The situation is considerably more intricate than in the electrostatic case, since a 

moving charge is:  a) source of a time-dependent E-field and b) source of a magnetic field B. 

Moreover, due to the Lorentz force it is: c) subject to E-fields and d) it is also subject to B-fields 

    (if the charge also possesses a spin, also e) the effect of B on the spin must be considered) 

Given the complexity of the task, in topic 4 we deal only with magnetostatics, that is, with 

steady currents, and we’ll see the effect of time-varying charges and currents in topic 5. In this 

topic, we start with the definition of currents and discuss how they are produced by 

electrochemical devices such as batteries. Ohm’s law is used to calculate resistances and current 

distributions in homogeneous and heterogeneous media. We describe how currents act as 

sources of B, comparing them with magnets. Contents of topic 4: 

electrodynamics

The average velocity                           is called drift velocity . If all charges are the same: 
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If there is more than one type of charge carrier, each having a charge q  , we average (sum)

 
separately over each kind of particle  :  vvnq
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  We define the current density as                               

 

The vector J is a macroscopic field like P or M. If there is only 

one type of moving charges, for example electrons (as in a 

metal wire carrying an electric current), then                        , 

which entails: 
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Current: flux of 
The flux of                     through an infinitesimal surface is (dropping the average sign for clarity): 

J
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Vol   J · da is equal to the (average) charge 

 crossing the area da in a time , 

which is by definition the current through 

da. Integrating over a larger surface S, we 

get that the flux of J through S is equal to 

the total charge dq crossing S in time dt: 
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Example: current in a wire 
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Units of I: Ampère (A) 

Units of J: A/m2

Drift velocity in 

a common wire 

Copper has one conduction electron per atom and 8.5 × 1028 atoms per cubic 

meter. Hence n = 8.5 × 1028 electrons per m3. For a current of 1 ampere in a wire 

having a cross-section of 1 mm2, we have J = 106 amperes per square meter, so:
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driftv This is about 26 cm per hour !!!

Local charge conservation law 
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If the volume enclosed by the surface S is equal to Vol, 

we get (using Gauss’ integral theorem in the last step): 

 boundary condition:  

global charge conservation implies that the charge crossing the 

surface must equal the charge leaving the volume it encloses: 

S
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dq
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As the total charge inside a volume is                                    , this implies: 
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The flux of J through a closed surface S is equal to 

the total charge dqacross that crosses S in a time dt:

Hence, in magnetostatics, J is solenoidal like B. From this one obtains the following

(only valid in magnetostatics)

 Charge conservation law for magnetostatics (NO CHARGE ACCUMULATION): 0J



(this is consistent with charge conservation: since                    , we have:                                       ) 

There can only be a bound charge current when the polarization is being created or altered. To 

see what the bound current density is equal to, consider a tiny cylindrical 

chunk of polarized material. The polarization introduces a bound charge 

density                    at one end and           at the other. If P increases, the 

bound charge densities increase accordingly, giving a net bound current: 

Currents of free and bound charges 
Since we distinguished between two types of charges, free and bound, and since under normal 

circumstances they cannot convert into each other, free charges and bound charges should be 

conserved separately:  0ftfJ 0btbJ

Here we have defined the free and bound current densities        and        . While       is due to free 

charges which are able to move freely across macroscopic distances in a sample, bound charge 

is basically atomic or molecular in nature, and can only displace inside a single molecule. 

Moreover, when a static electric field is applied, a static polarization results, so that at 

equilibrium no motion of bound charges takes place. In other words,   
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 in steady state conditions                         so that: 
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This gives for the bound charge current density:  

and 
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Ohm’s local law is equivalent to saying that the current density and thus the drift velocity are 

proportional to the electric field and thus the electric force                  . In fact  

The “local” form of Ohm’s law 

We know from mechanics that for a single particle (charge), the (steady-state) velocity is 

proportional to the external force if a viscous friction force is present: the friction force grows 

with the speed until it is equal to the applied external force (example: free fall of an object 

through air). If the drag force is written as                           , then the steady state drift velocity is  

                      , so that                                                                     , hence   
The viscous drag in a metal is due to the effect of collisions ; you’ll see in the solid state physics 

course that these collisions are not between electrons and nuclei/ions, as in a classical picture, 

but are instead scattering processes off impurities, defects, and lattice vibrations (phonons). It is 

this scattering that is responsible for the resistance R of a metal. 

Note that Ohm’s law does not hold for free charges in vacuum: Newton’s law predict in such 

case that it is the acceleration, not the velocity, that is proportional to the force per unit charge, 
 

hence the electric field:                                    .   The resultant non-Ohmic equation                    
 

holds in superconductors, for which the resistance R is zero (!) . 

(Ohm’s law is only valid for free 

charges: bound charges do not 

contribute currents in steady fields) 

How is it that the velocity (not the acceleration) is proportional to the force ??? 
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g = “conductivity” E-field inside the conductor 
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Resistance, global Ohm’s law, Joule’s law 
For a homogeneous medium Ohm’s law is                     , where the conductivity g is a constant. In 
 

steady conditions we have                 and by charge conservation:                                          . Hence 

we get: 
 the net charge is zero even 

in the presence of a current  

 Laplace’s law holds 

(  = 1/g = resistivity) 
(global) Ohm’s law 

where                                       is the resistance 

The power dissipated in the metal (due to Joule heating) is =I 2/R = I2 R  Joule’s law 
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Therefore inside the bulk of 

a homogeneous conductor:

Simple example: cylindrical conductor of length  and conductivity g

Since in steady condition there is no build-up at the surface, it is:  

                       (boundary condition for J), which implies                      

It is easy to find a solution to Laplace’s equation that satisfies the 

boundary condition that the normal component of E is zero at 
 

the cylinder’s lateral surface; namely:
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The uniqueness theorem tells us that this is the solution. 

Thus we find that J and E are uniform inside the cylinder: 

So: 

0V

0

2

0

totE

BA
f gAJI

VV

0bJ

The resistance of the wire of a light bulb changes with T, being 100  at room T and 1300   at 

Ohm’s law states that the free current density is directly proportional to the macroscopic E-field: 
 

               .  Since                                      , also the drift velocity is proportional to E:                    . 
 

The proportionality coefficient is called mobility ( ) :

Mobility; conductivity values for materials 

EgJ f

Insulators g (S/m) at 20 °C 

Diamond ~10  

Glass 10  to 10  

Hard rubber 10  

Wood (oven dry) 10  to 10  

Wood (damp) 10  to 10  

Sulfur 10  

Air 3×10  to 8×10  

Fused quartz 1.3×10  

PET 10  

Teflon 10  to 10  

Silver 6.3 × 107 

Copper 6 × 107 

Gold 4.1 × 107 

Chromium 3.8 × 107 

Aluminium 3.5 × 107 

Calcium 3 × 107 

Tungsten 1.8 × 107 

Zinc 1.7 × 107 

Brass (65.8 Cu 34.2 Zn) 1.6 × 107 

Nickel 1.4 × 107 

Lithium 1.1 × 107 

Iron 1 × 107 

Platinum 9.4 × 106 

Tin 9.2 × 106 

Carbon steel (1010) 6.99×106 

Lead 4.55×106 

Titanium 2.38×106 

Stainless  steel 1.45×106 

Mercury 1.02×106 

EJ f driftdrift vnqvJ Evdrift
Evdrift

Semiconductors, 

half-metals, and 

liquid electrolytes

Amorphous carbon 1.25×103 to 2×103 

Graphite 
2×105 to 3×105 //basal plane 

3.3×102 basal plane 

Silicon 1.56×10  

PEDOT:PSS 1×101 to 1×103 

GaAs 5×10  to 103 

Germanium 2.17 

Sea water 4.8 

Drinking water 5×10  to 5×10  

Deionized water 5.5×10  

g (S/m) at 20 °C 

g (S/m) at 20 °C Metals 
Evdrift

driftvneJ

nqg

R is measured in ohms ( , 1  = 1 

g is measured in –1 m–1 , or S/m 

          1 S (Siemens) = –1



Conductivity & classification of materials 

(g is strictly zero only for 

perfect insulators at 0 K)  

- Electronic conductivity

metals

insulators 

semiconductors & half-metals 

- Ionic conductivity In solids only one type of ion is mobile, usually cations (H+, Li+, Na+, K+, 

Ni2+, Ni4+,...) as they are smaller (in the same solid, mobility(Na+) > 

mobility(K+), etc). Instead, in liquid solutions all ions are mobile.

g  10+6 – 10+7 S/m

g  10–25  – 10–10  S/m

g  10–8  – 10+5  S/m 

Solid-state ionic conductivity is important: 

1) for electrical insulation, as it worsens the insulating properties of a material; for example, in 

glass (SiO2) insulation, the presence of impurities such as alkali oxides lowers the resistance, the 

presence of heavier-metal oxides such as BaO or PbO increases it 

2) in applications such as batteries for portable devices, rechargeable batteries, or fuel cells

electrolytes 

(ion migration)

(demonstration of existence of conduction electrons in metals: 

discovery of electric inertia (1913), from which e/m was measured

Homogeneous polarizable conductors 
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homogeneous medium: 
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General relationship between  and R between 

2 conductors in a homogeneous medium : 
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The charge conservation equation and the 

condition of steady state together imply:

Using the definitions of resistance and capacitance, 

 

                    and                     , we finally obtain :RI f
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 Laplace’s law doesn’t hold for    

      a inhomogeneous conductor 

 we can’t solve as we did for a homogeneous conductor. Instead, we can use the continuity 

condition: in steady state the total flow of charge (current) through a cross-section of the 

conductor must equal the total flow through any other. It is found that, in general, when a 

current runs through an inhomogeneous medium, the charge density is stationary but nonzero 

2 1 

Inhomogeneous conductors 
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Boundary condition:                                        ; hence

Example: Junction of two 

conductors of same cross 

section but with g1  g2, 

carrying a current I: 

2121 JJII

!!!012 EE

g1 g2

1E 2E

Strategy for case (a): guess the symmetry of J, hence impose the boundary condition for J (the 

normal component of J is constant, or equivalently, total (free) current I must be the same 

through any cross-section perpendicular to J. Calculate E from Ohm’s local law (it will be 

different in different conductors and will be a function of position in non-homogeneous 

conductors). If possible, integrate E R I . 

If required, use E to find tot = f (for nonhomogeneous conductors) and tot = f at boundaries. 

Strategy for case (b): study the boundary conditions for E to guess its direction and intensity 

(the component parallel to a separation will be continuous); check that you get a unique value 

J in the various conductors, 

hence calculate the total current I to obtain the resistance as R I. Use E find tot and tot . 

 

 

 

 

 
 

In either case, there is no need to calculate D explicitly, since in a metal P = 0 (so b = b = 0) and 

therefore D 0 E (that is, in a metal r = 1); the discontinuities of D are exactly the same as 

those of E, since tot = f and tot = f 

Problems with non-polarizable metals 
2 types of problems (the text of the problem will specify the value of g(r) ) : 

(a) highly symmetric, with the separation between media running orthogonal to E, 

or else spherical or cylindrical; 

(b) Less symmetric, with the separation between media running parallel to E 

g(x)g1 g2

g2

g1
g2

g1



Problems with non-ideal dielectrics 

2 types of problems (the text of the problem will specify the value of g(r) and of r(r) ) : 

(a) highly symmetric, with the separation between media running orthogonal to E 

(b) Less symmetric, with the separation between media running parallel to E 

In the case of a capacitor, from the surface free-charge density f on the plates, calculated using 

the boundary condition for D, we can calculate the total (free) charge on the plate, Qf . Hence 

 = Qf  

Note however that a capacitor with a non-ideal dielectric is a leaky capacitor, since the charge 

on the plates is constantly diminishing due to the current flowing through the dielectric. 

Moreover, if the conductivity of the dielectric is not homogeneous, free charge accumulates in 

the dielectric, so that one cannot even define a capacitance, as there is free charge outside the 

two conductors (though one can still define an “effective” capacitance, see problem classes) 

Strategy for case (a): guess the symmetry of J and express it in terms of the total (free) current I 

Calculate E R. 

Calculate D and P using the constitutive equation. Use E, D and P to find tot , f and b (for 

nonhomogeneous media) and tot , f and b (at boundaries). 
 

Strategy for case (b): study the boundary conditions for E to guess the symmetry of E (which for 

example for a capacitor will be the same as that of the empty capacitor); from E 

the constitutive equation to find D and P. As before, find all charge densities. 

IMPORTANT CONSTRAINTS 

to be fulfilled (for E and J):
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Generation of steady currents 
 principle of a Voltaic cell, battery, or fuel cell: conversion of “chemical” energy (stored in 

the materials/fuel) into flowing electrical energy (current). The ”chemical” energy is actually the 

difference in electrostatic energy of 2 different microscopic (atomic) electronic configurations 

 

When connected, charges (counterions)  

flow inside the battery: hence it behaves 

as if it had an “internal” resistance :    
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dq = charge dissociating at anode/ 

associating at cathode 

When integrating over a closed loop,                                        . However, if a battery is connected,   
 

the “closed loop” actually goes through the battery. One then separates the integral into two 

parts, one over the battery and one over the rest of the circuit :  
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*Alcaline batteries 

e2H2ZnOOH2Zn 2

2 OH2OMn

2OH2MnO

32

22 e

overall reaction: 

Anode (Zn) Cathode (MnO2) Electrolyte: KOH (aq) 

OH)(OMn)(ZnOK)(KOH2)(MnO2)Zn( 232222 ssaqss

22ZnOK
precipitates 

the first battery 

was invented by A. 

voltaic  

*Rechargeable batteries 

Lithium-ion solid-state batteries 

Each time a Li+ ion moves, there’s a variation of 

chemical energy, due to the fact that one material 

has more affinity for Li+ ions than the other  

If the electrochemical reactions takig place during discharge of a battery can be reversed by 

changing the sense in which the current flows, then the battery is rechargeable. Examples: 

 

In these batteries the electrolyte is a solid instead of 

a liquid solution; the solid electrolyte is an ionic 

conductor, permeable to Li ions but not to electrons 

It is preferred for safety reasons to have batteries 

without liquids in portable applications such as 

mobiles, laptops, gps systems, etc.  

e2PbSOSOPb 4

2

4
OH2PbSO

2SOH4PbO

24

2

42 e

overall reaction: 

Anode (Pb) Cathode (PbO2) 
Electrolyte (H2SO4 (aq)) 

OH2)(PbSO2)(SOH2)(PbO)Pb( 24422 saqss
discharge  

 (  

You should avoid leaving the battery uncharged for long times, otherwise PbSO4 crystals so large 

will form that the reverse reaction will no longer be able to take place



*Fuel cells 
If instead of using solid electrodes to providing the source of ionic species, you use a gas (H2, O2) 

or a liquid (e.g. methanol, CH4O) and favor decomposition of such gas/liquid at the electrodes 

by means of a catalyst, you get a fuel cell: 

e2H2H2

2
2 O2O

2

1
e

overall reaction: 

Anode (carbon paper 

with Pt particles) 

Cathode (same as anode) Electrolyte: silicon carbide 

(SiC) saturated with H3PO4 

OHHO
2

1
222

OHOH2 2
2

Electrolyte-cathode 

             interface

If there is no build-up of charge (                  ), then by charge conservation we have:                    . 

It can be shown (see exercise 0-17) that if J is limited to a finite region of space: 

B-field generated by currents 

vector potential A for B-field generated by currents: 

(notice that the vector potential A of a current 

element  = J d  is always parallel to the current) 

Biot-Savart’s law 

If instead of a line current I we have a volume (J) or a surface (K) current density, 

we can get B by the replacement: 
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00 AJ (true in magnetostatics)
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Ampère’s law 

Note that Ampère’s law can only be true for steady currents for which there is no accumulation 

of charge (local charge density = constant), for otherwise it would violate charge conservation!!

Ampere’s law 

(differential and integral forms) 

Gauss’s law for B 0BAB

0A

IdBJB 00

(Stokes’ integral theorem) 

Moreover, in magnetostatics:

Simple example vector potential: : vector potential of uniform B-field (see problem 4-22 and 

Txtbk p. 281) 

Graphical summary of magnetostatics 

SUPERPOSITION

PRINCIPLE



Biot Savart’s law vs Ampere’s law 

Compare with useful symmetries with Gauss’s law :

spherical  cylindricalplanar

Use: Ampere’s in symmetric cases, Biot-Savart’s law in other cases

toroid

BB

I

Another use of Ampere’s law: if                                              , what        generates this field?ybyxaxyB ˆˆ 2
J

 only one component               , it depends only on the radial coordinate  s

Example 1: infinite wire 

3) wire seen from above and below:

But changing the sign of        must reverse B !  

(again by Biot-Savart’s law)

4) Both outside and inside, Bz = 0 (Ampère’s law along 1 or 2 , with left side  )  

)(sBB

0sB

0B

Outside: 

Inside: 

1 2

2
0

2
0

Js
BsJdB

We assume the wire (or radius a) is very long (infinite) and carries a 

uniform (free) current density 

2) By Biot-Savart’s law, when

sBsB

             5) 

 actual 

calculation 

of B !!! 

z

s

J = const

a

I
BIdB

2
00
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0and, BHs

I(s)

1) By symmetry,      cannot depend on z nor 

BBBB sz ,,Cylindrical coordinates   

)(,0,0 sBB
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Example 2: infinite solenoid 

5) ONLY outside Bz = 0 (Ampère’s law along 1 , with top side  )  
 

Inside: B  = N I (Ampère’s law along 2)

,  where n = number of turns per unit length 

3) solenoid seen from above and below:

4) Applying Ampère’s law to thes circles shown, we get that both outside 

and inside                  (since the current through a circle is basically zero) 

We assume the solenoid is very long (infinite) and thin (thickness 

of the wire is negligible), and made of flat coils  the current 

flow along a plane parallel to the xy plane is basically zero  

RBRB

But changing the sign of         must reverse B !  

(again by Biot-Savart’s law)

0sB
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 actual 

calculation 

of B !!! 
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2) By Biot-Savart’s law, when

B

0and, BHs

1) By symmetry,      cannot depend on z nor 

fJ

BBBB sz ,,Cylindrical coordinates   

B- & H- fields of currents & magnetized media 
with only currents in vacuum 

or non-magnetic media: 

with only magnetized media: 
B-field 

 COMBINE THEM !!    (SUPERPOSITION PRINCIPLE)

 

If the magnetized medium is lineal (hence not a magnet), we also have 

0;0 BJB

0;0 BMB
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Maxwell’s equations 

for magnetostatics
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B 0

 Ampère’s law for H
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Problems with currents & linear magnetic media 
Ex. 1) & 2) with linear media: We found that the only component of B and therefore of the H 

field created by the current is the azimuthal one: only 
 

The field                      acts as stimulus field that magnetizes the 

linear material of the wire and of the medium surrounding it. 

z

J = const

0H
1)

2)

ˆHH J

1r 2r

ˆMM

Therefore the total (macroscopic) H-field is simply the one produced by 

the current, since there are no poles; hence we may write:

Jmmacrom HHM 2,12,12,1

Since H is azimuthal, we guess that M will be too, both 

inside and outside ; in such case, the magnetic pole 

density is everywhere zero, since M is perpendicular to 

the boundary and it is moreover divergenceless:

We found that H is parallel to z and nonzero only inside. We guess 

that M will be axial inside and zero outside. The corresponding 

magnetic pole density is limited to the flat surfaces of the 

solenoid, and in principle create a response field Hresp; however, 

in the limit of an infinitely long solenoid the poles are infinitely far 

away, so Hresp  0, and again we find:

1r
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Jrmacror HHB 02,102,12,1

Jmmacrom HHM 2,12,12,1 Jrmacror HHB 02,102,12,1
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with                                  )

one has:                                                     . Hence:

Boundary conditions for magnetostatics 
Maxwell’s equations for magnetostatics 

with currents and magnetic media:

fJH

B 0
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 The normal component 

of B is conserved: 

1n̂

2n̂

0B
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fJH IdH

dxdKdaKxId

With         in the surface direction orthogonal to          ,dxd

KnHnH 2211 ˆˆ (or also: nKHH ˆt,2t,1 nHHH ˆt

If the surface current density      is zero, which is the most common case in magnetostatics, the 

tangential component of H is conserved. Note however that               for superconductors also 

under magnetostatic conditions, as we will see later in this topic (with time-varying fields,                 

for electromagnetic waves impinging on metals; e.g. in the reflection of light by metallic mirrors)

K
0K

0K



Ferromagnetic materials in applied H 

H 

(B) 

2 types of ferromagnetic materials:

LARGE 

HISTERESIS

- HARD ferromagnets : 

hard to change their magnetization 

 used for permanent magnets) 

Ferromagnetic domains

SMALL 

HISTERESIS

- SOFT ferromagnets : 

easy to change their magnetization 

 used for shielding, electromagnets, ...

Applications of SOFT ferromagnetic materials 

Concentration of the 

magnetic flux: 

“AMPLIFICATION” of B  application: magnetic shield (see Pr. 3-14)

 other applications: 

magnetic circuits & electro-mechanical 

energy conversion (generators, 

motors, electromagnets, relays, 

transformers)  see topic 5

-  

Example: soft ferromagnetic bar

HBout 0
Outside:

HB rin 0Inside:

!!!1000001000r

out

in

B

B



magnetic circuits: zero-leakage approximation 
Magnetic circuit: piece of “linear” 

ferromagnet that guides and confines in 

its interior the lines of B of a permanent 

magnet or coil with a current    

(1)                          everywhere outside permanent magnets (linear constitutive equation) 

 

(2)                                   (this is called zero-leakage approximation) 

 

(3)                              (Ampère’s law for H ; this equation is easy to apply only if (2) holds)

The confinement of the magnetic field inside the 

material is due to the formation of localized 

magnetic “poles” in the region next to the coil. 

This is energetically more favorable than to have M 

everywhere parallel to the field lines generated by 

the coil alone, since it costs energy to form poles 

circuits, where free electric charges bend the lines of 

E so that they remain inside the conducting wire

zero flux leakage:

FIELDS in a MAGNETIC CIRCUIT:

NIdH

HMB

constantB

Hopkinson’s law 

 
M   = N1I1 + N2I2   

 is the RELUCTANCE of the magnetic circuit (or part of it)

The same formula holds if a part of the circuit has different 

cross-section S, since in the zero leakage approximation:   
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Notice the similarity between Hopkinson’s law and Kirchhoff’s law :
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Magnetic circuits with a permanent magnet 

 Hopkinsons’law holds also for a magnetic circuit containing a permanent magnet, provided: 

1) we include in the magnetomotance the term            , 

2) For the reluctance, we treat the region occupied by the magnet as if it were empty

Consider a magnetic circuit consisting of a permanent 

magnet of magnetization Mi linked with a linear 

magnetic material. Call i the length of the bar 

magnet and c the (average) length of the rest of the 

circuit. Ampère’s law is, in the absence of coils:

iM

In the linear medium we have                              ;   inside the magnet we have 

 

Combining these equations gives:
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The line integral of H can be zero because H is opposite to M and B inside a permanent magnet, 

that is, because Hi < 0. If the cross section of the circuit is uniform, then in the zero-leakage 

approximation B is everywhere constant in amplitude. 
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Application: electromagnet design 
A certain electromagnet consists of an iron yoke of relative permeability  r = 2000 wound with 

2 coils each with N = 500, with a gap of width w = 1 cm. What current  I  is needed to get a field 

of 1 T in the gap? Calculate the magnetic pole density at the gap

. We find that Bg = 1 T when I = 16.3 A. 

The B-field (H-field) along ad is B’F (H’F) in the iron and Bg (Hg) in the gap, elsewhere in the iron 

its value is BF (HF). Since the normal component of B is continuous across the gap surface, B’F = 

Bg . Also, by symmetry the B-field in the iron along ad should be twice as large as that in other 

parts of the yoke: B’F = 2BF . Apply Ampere’s law  to the path abcda :

In the gap we have                                                           . Since B’F = Bg and BF = B’F /2 = Bg /2 = 0.5 T ,  

 

we find:                                            and  
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Ampère’s equivalence theorem 
Currents are sources of B:                         , and so are magnets: 
 

We see that                 acts as a source term for B in the same way as a volume current density.  

This is the essence of Ampère’s equivalence theorem: a magnetized body with magnetization 

density  M(t,r) is equivalent to a current density distribution equal to 

In reality there’s also a surface density term                          . Examples: 
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Toroidal  

statement of 

Ampère’s theorem:   
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Equivalent currents of a magnetized object 
Proof of Ampère’s equivalence theorem. The vector potential created by a magnetized body is:   

Integrating by parts gives 

 

If we define the field                          , we see that the 1st term is precisely what we expect for the 

vector potential of an (equivalent) volume current density                                . Moreover, using  
 

the vector calculus identity                                                  ( exercise 0.15(b) ), the 2nd term can be  

 

rewritten as an integral over the object’s surface: 

 

The last expression is formally the vector potential of an (equivalent) surface current density, 

defined as 

MJe

Hence the vector potential and thus the magnetic B-field generated by a magnetized body of 

magnetization M(r) are the same as those generated by the set of volume and surface current 

densities                         and                         nMKeMJe
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Superconductivity 

constR

T  when  R

)K(T

Type-1 superconductors

)0(cH

)(TH c

)K(T

cT

There exists a critical temperature      , above which superconductivity ceases  

There exists a critical field          above which superconductivity ceases  cH
cT

Superconductivity is characterized by:                  

1) Zero resistance (R  0   g  ) 

2) Perfect diamagnetism (Binside = 0) 

Superconducting state (R = 0)

It is found experimentally 

that in type-1 superconductors :

(impurities)

R

(vibrations)

2

1)0()(
c

cc
T

T
HTH

Abundance of superconducting elements 

High Tc superconductors: 

discovered in 1986 at IBM 

 

 

 

                           discovery of 

superconductivity by Heike 

Kamerlingh Onnes in 1911  



Microscopic mechanism of superconductivity 

1
2

1 2

Before: 

When electron 1 passes through the 

lattice, it distorts it (creating a quantized 

vibration or phonon)

After: 

The distortion (phonon) creates an 

excess positive charge that attracts a 

second electron (2) (electron 2 absorbs 

the phonon excited by 1) 

This mechanism results in an effective interaction that brings 2 electrons closer together, 

forming a so-called Cooper pair . Assuming that the electrons’ speed is given by Fermi’ velocity 

(vF = 106 

D = 10–13 s , the distance between 
 

two electrons in such a pair is approximately: 
 

This distance and screening are large enough so as to limit the effect of the Coulomb repulsion

Å1000DFvdistance

Effects of the effective inter-electron attraction 
A metal is characterized by a conduction band that is partially filled up to the so-called “Fermi 

energy”, EF). When two electrons interact by exchange of a phonon to form a Cooper pair, the 

energy of the pair is lowered by an amount comparable to the phonon energies, of the order of 

-called superconducting gap, as shown below to the left: 

: an electron in a normal metal has energy levels available just above EF to 

scatter into; such scattering processes determine a finite resistance. For an electron in a Cooper 

pair to scatter off a defect, instead, it must break the tie with the other electron, that is, both 

electrons must gain an energy comparable to half the gap. In other words: due to the 

superconducting gap there are no available energy levels for the electrons to scatter into. 

Observation of superconductivity only at low T: at normal temperatures thermal excitations 

provide enough energy for electrons to jump across the gap 

Diamagnetic behavior: the effective coupling is stronger when the two electrons have opposite 

spins (Cooper pairs are spinless), for the space wavefunction of the pair is then symmetric, 

which allow them to get closer together. The application of a magnetic field tends to align all 

electron spins in the same direction thus breaking the Cooper pairs 

    superconductivity and magnetism are incompatible with one another 

The QM theory of superconductivity is called 

BCS theory (Bardeen-Cooper-Schrieffer)



Superconducting currents 
Consider a piece of a type-1 superconductor under an applied external magnetic field. Although 

a superconductor is nonmagnetic in nature, it responds as a perfectly diamagnetic medium, 

totally excluding the magnetic field B from its interior. It does so by means of superconducting 

currents flowing on the superconductor’s surface. To calculate  the superconducting currents, 

we use an analogy with equivalent currents. Consider a sphere made of a perfectly diamagnetic 

material with                , that is,                , so that B = 0 always inside the material. 

In an applied field Hext , the sphere will become magnetized so as to screen B from its interior:     

The response magnetic field is not really produced by a 

magnetization, since a superconductor is nonmagnetic, 

but rather by superconducting currents, which we may 

determine using Ampère’s equivalence theorem:

with               we get:                              or: 
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The existence of a critical field Bc above which superconductivity is destroyed sets an upper limit 

to the current that a type-1 superconducting wire can carry. By Ampère’s law, a current I in a 
 

long wire of radius R0 generates a magnetic field of magnitude                       , for s  R0, where s 
 

is the radial distance from the wire axis. This result does not depend on how the current is 

distributed as long as it is symmetrical. In type-1 superconductors there can be no field inside 

the material; hence the current must be distributed on the outer surface of the wire. The critical 

current is to the value of I at which the field at the wire’s surface is equal to the critical value:

Critical current 
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Despite being confined to the superconductor’s outer surface, critical currents can be 

surprisingly large. For example, consider a wire made of tin with a radius about the size of a hair 

(40 m). How much current can the wire carry at zero kelvin and remain superconducting? 
 

Answer: critical magnetic field of tin at 0 K: 0.03 T . The maximum superconducting current is:

Examples of superconductors 

with very high critical fields: 

superconductor Nb0.75Zr0.25 Nb3Sn V2.95Ga 

Bc (T) 11 20 35 



Applications of superconductors 

- Superconducting magnetic levitation train SCMaglev   (Japan, based on the Meissner effect) 

 
- powerful electromagnets (with NbTi or Nb3Sn wires)  B up to 20 T  

 they are for example used in magnetic resonance imagning (MRI) 

 

- storage of energy into superconducting currents, energy transmission at a distance with 

superconducting cables (no losses due to Joule heating) 

 

- high-precision B-field measurements (SQUID devices) 

 

- further miniaturization of electronic chips (size is now limited due to heating by Joule effect) 

http://en.wikipedia.org/wiki/SCMaglev

Using the Taylor expansion                                                      ,  we can calculate the vector potential  
 

produced by a general distribution of currents at large distance r as:

Multipole expansion for A 
The vector potential for a current distribution is 
 

We carry out the same analysis that we employed for the electrostatic potential. Since: 

The first term in this multipole expansion, proportional to 1/r , is zero because the total current 

of a set of moving charges confined to a finite region of space must be zero:                          The 

first non-zero term, that scales as 1/r2 , is the so-called “magnetic dipole” term, given by: 

(magnetic) dipole term

We see that the leading term in A is 1/r2 (just as for a spin magnetic moment). Therefore, the 

leading order in B must be proportional to 1/r3 : 

Hence the B-field of a delimited current distribution goes at the most as 1/r3    (this is not true 

for an infinite straight wire or an infinite current plane, which are not delimited currents) 
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We see here that the vector potential of a loop is, in this approximation, the same as that of an 

equivalent point magnetic dipole: 

For a closed loop run by a current I , the leading term of the vector potential 

at large distances can be written, using the equality                       , as:  

the backside of Ampère’s equivalence theorem: 

equivalent magnetic dipole of a current loop 

By making use of the vector calculus theorem (Pr. 0-15(a)):                                              , we get: 

Thus: 

The quantity                      is called the “vector area”. For a flat loop, it is simply the area enclosed  
 

by the loop times the normal direction: 

loop surface
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Magnetic dipole of a planar current loop 
The vector potential and thus the B-field created by a current loop is (in 1st order approximation) 
 

the same as that of a spin: 
 

This analogy between current loops and spins is much deeper. For example, we can calculate the 

torque on a loop under an applied field, or the energy of (and force on) a loop in an external 

(non-uniform) field in the same way as we do for a magnetic dipole. Here is an example: 
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Lorentz force: 

summary of  Electrostatics & Magnetostatics 

Maxwell’s equations: 

 Electrostatics         Magnetostatics  
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Linear media: 

EgJ f
ED

EP

r

el

0

0

HB

HM

r

m

0

Linear homogeneous medium: gRC r 0totrf

0fJ

      -     ± ± ± ± +

  -     ± ± ± ± ± ± +

- -  ± ± ± ± ± ± ± ± ++

- -  ± ± ± ± ± ± ± ± +++

- - ± ± ± ± ± ± ± ± ++

     - ± ± ± ± ± ± +
          -        ±     +

Analogies between plasmas, metals, dielectrics, magnetic 

media, & current distributions

https://www.youtube.com/watch?v=sauxaWJynHo


