Time-varying fields & Maxwell’s equations
beyond the steady state (TOPIC 5)

A time varying magnetic field generates an electric field (“induction”), and a time-varying
electric field generates a magnetic field (“displacement current”)

The first concept was demonstrated by one of the greatest experimenters of all time, the
second one was first introduced by one of the greatest mathematical physicists of history

Why do we study in detail time-dependent fields?
1) Only with time-varying fields it is possible to derive the formula of the magnetic field energy
2) Only with time-varying fields is the connection between electricity and magnetism evident
3) Electric machines (generators, motors and transformers) work with time-varying fields
4) Time-varying charges and currents generate electromagnetic radiation:

light is a time-varying electric & magnetic field (electromagnetic wave)

Contents of TOPIC 5:

- Electromotive force with static & time-varying magnetic fields: Lorentz-force;
Faraday’s law in integral & differential form; relation Lorentz force & Faraday’s law

- Magnetic energy and magnetic forces, applications: generator, motor, transformer
- Time varying electric fields: Ampere-Maxwell’s law and displacement currents
- Maxwell’s equations, Poynting vector and Poynting’s theorem, irradiance

- Electromagnetic waves, refractive index for perfect insulators, Snell’s law

Lorentz force law & Electromotive forces

Lorentz force on moving charges [
Lorentz

Lorentz force “density” : £(t,7)=p(t, f)[E(t, )+, (1, F)x B(t, ?’)]
(force per unit volume) = p(t,F)E(t,F)+ J(t,7F)x B(t,F)

Example: motion in (quasi) uniform B (and E) fields o2
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DEF: electromotive force = © = Jf-dﬁ = —JF-df
(electromotance, emf, ¢ q

= work per unit charge) force per unit charge

fihe applied force o = [ f-di = j_ﬁwqm di=[E-di+|(5xB)di= s

is the Lorentz force: ag
there are 2 ways to generate a current: =-AV
— 1 - electric electromotance: batteries & fuel cells

- magnetic electromotance: generators

IMPORTANT : the B-field does no work on moving charges, but it does work on magnetic dipoles
(and thus on magnetic materials). Moreover, energy must be spent to create magnetic fields.



surface delimited by C(t + At)

Magnetic emf in a moving loop
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But d/xA¥F =ndA isthe outward directed area element of a section of the ribbon. Hence:
= D(X)/At, where O(X) is the flux of B through the lateral surface X (the integration is only
performed on d€ since in the other direction the thickness is infinitesimal). Now, the flux of B
through a surface enclosing a volume must be zero; hence ®(X) + O(C(t + At)) + D(C(t)) =0,
where the 2" and 3™ terms are the flux through the upper and lower surfaces in the figure.
In the definition of the flux, the direction of 7 is outwards. But here it is more convenient to
define it always in the same direction with respect to the loop. Let’s say it is outwards (parallel
to 77 ) for the surface S(t + At); then it is antiparallel to n for S(t); with this definition the sign
O(C(t+dt)-D(C()) dD(C(2))
dt dt

This magnetic electromotive force (which does not stem from any battery/voltage difference)
is non-conservative (the line integral of F ., around the closed loop is different from zero).

of ®(C(t)) must be changed, to give: ;© = O(dx)/dt =

Applications of Lorentz’s law and magnetic emf

How can one tell which way a magnetic emf goes? Look at the direction of the magnetic force,
or remember Lenz’s law: the current generated by a magnetic emf always flows so as to
oppose the change in external flux.
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- DC electric motor - mass spectrometer
- Hall effect (metal/semiconductor) & polarization of dielectric moving in B-field
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Other applications of the Lorentz force:



Faraday’s law: induction
F- - B(ROZ) (2‘)

The two situations (1) & (2) are the same, only described by observers moving with relative speed v :

-In (1), the charges in the loop are moving in a static B-field and are o dCDB

subject to the Lorentz force, which acts as electromotive force (topic 4): |© — — dt

-In (2) the same net electromotive force must be present = the very dD
existence of the Lorentz force by itself implies a modification of the field §E dl =— B
equations for E: the line integral of E cannot be zero in (2), it must be equal to: dt

In order for the equation of the e.m.f to holds for case (2) no matter what the shape of the loop, it must be:

- 0 E Faraday’s law: a changing magnetic field
V X E' = ———| produces an electric field (& thus an induced e.m.f)
ot

In the most general case, the total e.m.f. in a moving loop which is not connected to a power
supply is the sum of two terms, one due to the Lorentz force, and the other due to induction:

., oB . - =\ -~ . Lo dd drs
¢ __-!‘E.da—i_ {;(va).df.Thetotal e.m.f. is always equal to: = o UB daj

loop

Implications of Faraday’s law

In the most general case, the total e.m.f. in a moving loop which is not connected to a power
supply is the sum of two terms, one due to the Lorentz force, and the other due to induction:

—

L oB . o=\ -~ ) ., do d ~
¢ __B[E.ch_ §(vx3).df.Thetotale.m.f. is always equal to: = o dt(SB da}

loop
electromagnetic induction = generation of an E-field by a B-field that varies with time

Faraday’s law VxE = _ 9B
ot

(actually discovered independently by Faraday and Henry in 1830-1831)

Simple application: Find the time-varying B field that induces the electric field:

sin wt

E=(ax’y’i+ fz*P)cosat  Answer: B=(4/°% +3ax’y’2)

ot ot
The last equality implies that the field in brackets is a conservative field, hence one can write:

Since B=VxA ,we can write Faraday’s law as: ﬁxE:_M or: ?x(ﬁ+a—‘4j:0

R 8;1 R This equation has two extremely important consequences:
E+—=-VV Y
ot 1) E is no longer conservative: E =-VV r
t

2) In the presence of time-variations, the energy U = qV associated with electrical interactions
e.g. inside a battery, goes not only in the creation of electrical fields, but also of magnetic fields



Technological applications of Faraday’s law
VxE = _G_B
ot
Applications of Faraday’s discoveries:
1) induced emf
2) Magnetic energy and self-inductance, inductors
3) Foucault (or Eddy) currents: induction stove (heating due to Joule effect and
hysteresis loss of ferromagnetic iron pan which also amplifies the magnetic field
—you need a special pan for an induction kitchen!)
4) induction motor, transformer, ...
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Michael Faraday’s curriculum vitae

Scientific terms and concepts introduced by M.F. :
Force field, force lines (electric and magnetic lines), ion (anion, cation), voltmeter,
electrode (anode/cathode), electrolyte, electrolysis, dielectric, dia- & paramagnetic

Most important scientific discoveries

1) Faraday’s induction law

2) Linear dielectric and magnetic response:
- diamagnetism
- dielectric constant

3) Faraday’s laws of electrochemistry

4) Faraday rotation (magneto-optic effect)

Inventions

- Electric motor (1821)
- Electric generator and precursor of dynamo (1831)
- precursor of transformer (1831)

Units named after M.F.:
farad (capacitance) ; faraday (electrochemistry: charge of N, electrons)



Energy balance in a circuit b

= s P
Consider a circuit in which the current density is increased from zero to E’
some value J; . The power source (e.g. battery) needs to supply energyto ./ %\ 14y ]
accelerate the electrons; such energy is not only to overcome friction, but I '
also the effect of the opposing Faraday field generated by the increment _ f R
of J, that is, the corresponding variation of ®. 1 Va. Vi

Take an element d€ of the circuit, of cross section da . Let’s calculate the work done by the
source (battery) to increase the current across d€ from zero to a finite value /; . The source
maintains a fixed voltage drop across any two points of the circuit. If at a given instant the
current through the circuit is I(t), the instantaneous power supplied by the source is equal to :

Sgbattery = _(Vb - Va )](t) =—-AVI
If the two points are an infinitesimal distance d€ away, the voltage drop hetween them is dV,
which is the variation of the scalar potential field across dé: dV =VV.-dl
Hence, using Id/=J dtr ,weget: dp=—(dV)I = _VV-di ] = _ﬁv.]f dr

Now, we saw that Faraday’s law implies E+2_A= _VV . We thus get:
t -

. 04 - - -
dp=E-J,de+ 20, dr= p:IdTE-anLIdra J,
. —
(1) mechanical power & cages (2) Variation of magnetic energy

The first term is the mechanical power absorbed by the charges, which is finally dissipated as
Joule heat. The second one is instead stored as magnetic energy as we show in the next slide 2>

Magnetic energy gazjdrﬁ-jf+jdra—A-jf
ot
(1) § charges (2) dU ag/dt

The first term is the mechanical power required to accelerate the charges and keep them
moving against the viscous friction drag responsible for the resistance of the wire:

(1) J‘dTE'Jf = IdTE'prdryi T(J.dqu Vaii = qu)'Vdriﬁ :F'Vdriﬁ = § charges
pdr=dq,
Notice that we can extend the integrals to all space, since Jf and Vdrzft are zero outside the wire

The 2" term is the power used up against the induced e.m.f. created by the time-variation of
the magnetic field. It is the time-variation of a magnetic energy stored in the magnetic field:

(2) jdr— J —Idrz—f-(ﬁxlj[):Idr?-{[jlxé—g}+‘|‘dr (ﬁx—J Idr 6B

In linear media B = gy, H . Hence: I[Hx] di=0 at o
B aB d B d _du,,
2)= Jdr — j ( ] —|dr =—\dru,,, = £ . Therefore:
My dt\2upy ) dts 2 p,  dt dt
dU B> 1
= +—™  with U =|dr and u, ——H-B
80 source SO charges d t mag _[ Z’tmag mag 2 A 2

Upnag is the energy stored in the magnetic field (= used to build up the field against induction)



Self-inductance and magnetic energy

1 Lo
The magnetic energy in linear media can also be written as UmagZEIdT J; -4 .Infactitis:

1 Lo A S o e O T

U =5jdrH-B=5jdrH-(V><A)=Ejdrv-(AxH)JrEjdrA-(WH):EICZTA-Jf
:%J'(}ixﬁl)-dﬁ=0 at o0

According to Biot-Savart’s law, the B-field = rdT’ JF )X (F =F") Ly 10 % (F =)

of a loop carrying a uniform current 7 is: loop_ﬂig =7 h 477§ 77

We see that the field is linearly proportional to /. In the same way, the flux of B through the
surface delimited by the loop is also proportional to the current:

- u, di'x (F =7\ .

O, =|B-da=—1 da=L1 _
o=] A j[{) P T C,=L1
The proportionality coefficient L between the flux of B and / is the D l dl
(self-)inductance of the closed loop. In terms of L, Faraday’s law becomes: * =— dtB = _LE

(this is the formula you use in circuit theory)
Similarly, we find for the magnetic energy of a loop (using [/ = ]fdz- ):

U, 1jdrj,.-AT=%I§dz-/2':%1[(ﬁx2)-da=%1j§-da=%1q>3

g__

Stokes’ theorem 5

1 1 ()
= Magnetic energy of a loop: Umag = 51 D, = Ele = 2’2

Magnetic vs electric energy formulas

It is interesting to compare the energy formulas we just found with those for electrostatics:

1z = 12 - i 1= = 1
1 1
=% v, =ter=tir 2% u,=sov=cor
I, & 2 v 2

ext ext



*Superconductors: London eq., Meissner effect

Superconducting currents are not really two-dimensional: they are not strictly confined to the
surface of the medium but actually penetrate inside it a short distance, called London
penetration depth. In a normal metal, Ohm’s law Jf = gE holds. The fact that J (a constant
times v,,;;) is proportional to E is a consequence of electron collisions. But in a superconductor
such collisions do not occur; rather, electrons have an accelerated motion: a4 = ﬁ _ ek

.=
. aJ dv, . . . dt n

Since " = ne " (where n = density of superconducting electrons) we get, instead of Ohm’s
oJ ne’E ne’

law, the London equation: 8_ = =xFE (with K =——). Taking the curl of both sides and
t m m

using Faraday’s law we obtain: ovVxJ) —VxE= _Ka_B. Hence apart from a constant that
ot ot

we can discard, we have VxJ=—xB. Combining this with Ampere’s law for B, VxB=pu,J

(valid since a superconductor is nonmagnetic), we get:

ﬁxﬁxéz—,uo/cg , Which yields, using V-B=0 : B,—
V’B = /JOKE EEZ with A :\/7= skin depth —x/A
7 Y\ gyné B(x)= B,e
The solution to this equation is (in 1D) B(x) = Boe_x/l Z
This shows that B decays inside a superconductor in a short air | superconductor

distance A, .Hence B =0 inside : this is the Meissner effect !

*Condensation energy of a superconductor

We saw in topic 4 that a magnetic field destroys the superconducting state. We can use this to
calculate the energy density of the superconducting state at a given temperature T. Take a long
cylinder made of a superconducting material, initially in the absence of a magnetic field. As we
turn on a weak magnetic field, it fills all space except for the region occupied by the cylinder,
since superconducting currents arise that screen the interior of the cylinder from the field. When
the applied field reaches the value of the critical field B.(T) at the temperature T, the
superconducting state ceases to exist because it is energetically more favorable to have the
region it occupies filled by the magnetic field. Hence we can calculate the so-called
“condensation energy” density of the superconductor as the equivalent magnetic energy
density. The energy density associated with a magnetic field (or, which is the same, with the

- - B?
the superconducting current density needed to expel it) is Upug = —B-H = 2—
Hy
Here we considered that the normal and superconducting states are basically non-magnetic, so
that g — ﬂoﬁ (the normal metal is in fact a Pauli paramagnet, but also in this case U = 1)

The condensation energy density uc. of the superconductor corresponds to the value of the
magnetic energy density when the B field is equal to its critical value: BZ(T)
U =U, =——
sC B

24,

The simple formula for the superconducting condensate energy density is actually only valid for
a cylinder. For other geometries the amount of energy required to expel the magnetic field turns
out to be equal to the magnetic field energy times a geometrical factor.



Mechanical force in an electric circuit

Consider a closed circuit of resistance R and inductance L, connected to a source that provides a
constant current I (with /= const, the power transferred to the electrons is dissipated as heat:
# charges = 10w = R 1 ). Suppose that we move or deform the circuit in such a way as to vary the
inductance L and thus the flux through the circuit. The voltage drop across the resistance R is:

AV =0+ o =7 — dg’)B =R I The e.m.f supplied by the source that maintains the current
t
constant must overcome the induced e.m.f. due
. :&+R1:M+R1:d—L1+R1
to he change of L, as well as the Joule losses Hence: dt dt dt

On the other hand, by energy conservation, the energy provided by the source must be equal to
the change in energy stored in the magnetic field, plus the heat lost by Joule heating, plus the

mechanical work W to move the coil: . dU,,,., dw
S/‘)source =c I = df + S/‘)Joule + d;nec

Assuming that the work is done by a force F across a distance dx, we find:

 Idt = d(%L 12j+§QJoule +dW = %IzdL +30,,,. + Fdx (note: 6Q,,, is heat, not charge)

Plugging the electromot{ve force found above in the last equation we finally get:
O ldt=dL I’ +RIdt = ElzdL +00,,,. + Fdx . Since Joule’s heat is 50,,,, = R I’dt , this gives:

1 ,dL
Fdx = PdL-L1dL =+ X 1Par . Hence: |[F = — 12 &~
2 2 2 dx
. . . . CD 2 dUmag
This last expression for the force can also be written, using 7 = "2, as:|F =-
" 2 L dx © p=const

Inductance, energy & force in a magnetic circuit

We saw in topic one that in a magnetic circuit Hopkinson’s law applies: 77 = N [=R®__ .

Here @ .. is the flux through a cross section of the circuit; for a coil of N turns, the total flux

crossingitis @, = N® . Neglecting the magnetic field outside the circuit, we have:
B core

@ N?
NI =R®D, = SRTB ,or: d, = El = L I . The self-inductance of a

2
coil of N turns wrapped around a magnetic circuit of reluctance R is thus: [, = —

The magnetic energy of a magnetic circuit with only one coil around it carrying a current / is :

1 1 N° 17?1 1
Uma :_L12 :_N_12 :_W :_mq)iore :_W q)core
£ 2 2 R 2 R 2 2
If there is a gap in the magnetic circuit, there is a force between the opposite poles of the

electromagnet across the gap, given by:

2
F:lﬁd_L:l]ZNZi(iJ:_lW dR , that is: Fz_lq)z @
2 dx 2 dx \ R 2 R* dx 2 dx

Although we calculated this force in the previous slide assuming a constant current, the force
between the poles cannot depend on how the power supply works, but it is always the same for
a given pole density, that is, for a given magnetic flux through the core. This is true even if the
magnetomotive force is provided by a permanent magnet instead of a coil. Notice that such
force can be written, using the expression for the energy given above, as: du,..

- dx

D, =const




Electric machines & the electric grid

Classification of electric machines:

1) Machines that convert mechanical energy/work into electric energy: GENERATORS
2) Machines that convert electric energy into mechanical energy/work: MOTORS

3) Machines that inter-convert electric energy: TRANSFORMERS

In cases 1) and 2), the machine contains at least a coil moving in an external magnetic field.

Whenever this happens, there is:

a) aninduced e.m.f./back e.m.f. in the coil, as a result of the time-varying flux;

b) a mechanical boost/friction force due to the Lorentz force

It is impossible to have one without the other; however:

- generators are designed in such a way as (also) minimizing the back e.m.f. that would reduce
the output voltage;

- motors are designed in such a way as (also) maximizing the current through the loop.

In both cases part of the task is achieved by ensuring that the magnetic field generated by the
current in the loop is negligible with respect to the external field

Transmission Lines
Carry Electricity
Power Plant Long Distances Distribution Lines
Generates Electricity EE ged Carry Electricity

= To Houses
OVERVIEW of an / :
ELECTRIC GRID
(electric power - )

delivery system)

Transformer
Steps Up Voltal
Far Transmissidn

MNeighborhood
Transformer Transformers On Poles Step
Steps Down Voltage Down Electricity Before It
Enters Houses

AC generators (power plants)

CD=J.B-dA:BAcosa)t

= =—C;E=BAa)sin ot

windmills



(Ideal) transformer

ariii:;?g Secondary The primary coil consists of
N, turms “F:“:r:ﬁ“ﬂ N, turns, the secondary one
_ : of Ny turns. Suppose an AC
E!I]”rr:nT f vo‘ltage is a-pplied to the
Secondary primary coil. By Faraday’s
[ law, the induced e.m.f. in the
Primary secondary coil is:
voltage

dP
Vs :NSE-

Since the same magnetic flux
goes through the primary
coil, one also must have:

dP
FP — HPE

Vp _ Np

Hence for an ideal transformer == — = == {f , Where ais the winding turns ratio

Vs Ns

Motors
A motor has a moving part (brushed or brushless)
(rotor) and a fixed part (stator). DC motor: a DC current,
There are many types of motors: whose direction reverses
every half-turn, flows
Reluctance motor : AC through the rotor

power (usually with
different phases) is supplied
to the windings (A, B, C) of
the stator. The total
reluctance of the magnetic
circuit made of stator and
rotor depends on their
relative orientation

N

high reluctance

Induction (asynchronous) Phase A :J : ] | 1
motor and synchronous motor: |

AC power is supplied to the ok - | | | | |

stator windings, producing a B- Phase 1—'—| | | | |
field which causes an induced .

current and a magnetic force in
the rotor, which contains either
windings or a “squirrel cage”



Ampere-Maxwell law & displacement current

Ampere’s law 6 % H = jf can’t hold in general. In fact :
a) Taking the divergence of Ampere’s law we get: V- jf =V. (6 X I:I) =0 . This can’t be true

o . S s
always, since it violates the charge conservation law: V.J . = :
(we see that Ampere’s law only holds for magnetostatics ) NS

b) Ampere’s law in integral form, applied to the
charging of a capacitor, gives conflicting resultson =
different surfaces enclosed by the same loop:

$H-di=[J, -di=1=[J, -di=0""
N

a Sb

.~ - D
Maxwell “fixed” Ampére’s law by adding an extra term, obtaining: |\Vx H =.J

+_
f . at‘
0 0 “Displ t
& TN _T. T L0 e g T O isplacemen
) Vo (VxH)=V T+ (V-D)=V T + < p, v current density”
b) Charging of a oF oF
capacitor at a &ﬁl-d_lz=jjf-dc_i+]. l-dEi:If+$0I—1-dEz=If
constant rate 5 5, O ' SIR[ZL_/ N
(current): Q((t) = L t =5, =0
0, It - - = . ¢dD, _ d
D,=o, =S—f=SL = §H,-di =[], di+ | - 2 -dazd—(Dzsz)zll,. i =t vV
2 2 S, s, 4 t

Displacement current density

displacement oD 0E oOP

B You saw the 1t term in Fisica 2, it is called
current density 5, ~ €9 ot + ot

“vacuum” displacement current density

We encountered the 2" term previously, it is the bound charge current density J,
When can the displacement current be neglected?
1) In magnetostatics, always (no time-variation of the fields)
2) In general for slow variations (quasi-static approximation):

-~ - - D “slow-varying field” -~ = =

VXH_Jf+E_) approximation AVXH(I):JJU)
3) Especially inside metals, at all frequency attainable in electronics (below infrared/visible):
X

=2 _._.__;jf:gE

—e.

Example: time-varying current in a metal. If £ = E sinwt, then:

J, = gEsin wt

|j '|max E 1018

oD  OE oP  OE S L

E:go 5, + 5, =g, P =¢,E, 0 cos wt oD Ejeywo e0 o
— ot
=0 in a metal max

isplacemen & —
—, diplacement 7 =L w~x10"w > Inametal, normally: L comen << jee
free g

—> the slow varying approximation holds in metals at electronic frequencies



Sources of BandH

The Ampére-Maxwell’s equation V x H = jf +88—D, besides implying the local form of the charge
t

conservation law, together with Gauss’s law for H (or B) it entails that there are four types of
sources of H and B:

_ . - 2D - OE 0P _ B . . _ op
VxH=J,+—=J,+&—+—_— Vxﬁzjf+vXM+a_P+goa_E
ot o Ot ) dy ot ot
e ! e NG
V-H=-V 'M<_ pmag) V-B=0 J, - vacuum displacement
b current density

We see that the sources of B are indeed 4 :

—

- Free currents, J, (1)
- the curl of M, which we know from Ampere’s equivalence theorem corresponds to an

equivalent current density je =VxM (2)
- the displacement current density 65/6t , Which is the sum of :

- the “proper” (vacuum) displacement current density, goaa—E (3)
5 t

- the bound charge current density, aaP (4)
t

oP -
The last term is not surprising since we already know that T J4 is the current of bound
charges, which is a current of real charges and as such a source of B. Some books define a

“total” current density as J,, = jf + jf +J, , so that one can write an equation similar to the

N S o = 5 < oE
Ampere-Maxwell equation in vacuum you saw in Fisica 2: VxB = pu,J, + 1,&, rn
t

Summary: axioms of electromagnetism

in the absence of material media, we
get back the equations of Fisica 2:

DV-D=p, po=pD=cE = |§-F=Lu
_ : €
) V-B=0 V-B=0
my vxE=-8 Ouxpo_ 9B
ot ot
. D D=¢FE U . E
V) VxA=J,+2 D=l o |\ xB=p|J, +e, 2
T ot B=uH ' ot
V) fLorentz :(pf+pb)E (jf+"7b)x§ ‘]b:O’pb:> fLorentz pr_:-i-ijE
EMAG =
Maxwell’s equations
+ Some consequences:
—> B and E fields are interrelated !!!
Lorentz force - Poynting’s theorem (e.m. energy theorem)
+ —> Existence of e.m. waves !!!
e L. . - Uniqueness theorem for EMAG
Constitutive relations g




MAXWELL's EQUATIONS
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e.m. energy (Poynting’s) theorem in vacuum

1 - = OE
If we take the dot product of E with Ampéere-Maxwell’s equation —VxB= 6‘05 we get:

. Hy
I = (= = - OF I S S,
—E-(VxB)=80E-E . Using the general vector identity V-(ExB):B-(VxE)—E-(VxB), itis:
Ho
6B 0E_ L .(vxE)-1v.(ExB):-IB.5B‘-v(EXBJ (we also used vx /=28
Hy Hy My Ot Hy ot

— —

: I ., s ExB : :
With the definition of Poynting’s vector § =———, the last equation can be written as:

Hy
goE-@ L8 01, g2 1 p 9.5 since:

P ~ €0
o or o2 Ot 2 44, 2132 — vacuum magnetic energy density
Ho

~ Poynting’s theorem (in vacuum)
= gum +V -8 =0 > conservation of electromagnetic energy
0

In integral form (integrating over the volume) : —aUem = jdV V.-§S= D,

1 . .
~—¢&,E* — vacuum electricenergy density

- the variation of electromagnetic energy (in vacuum) is equal to the flux of Poynting’s vector;
Poynting’s vector takes e.m. energy across the boundary of a volume

Def: time-average of the modulus of Poynting vector = irradiance ( 3 ) =
= (electromagnetic) energy flux per unit area and unit time



Poynting’s theorem in linear media

We define the Poynting’s vector as S = E x H . Taking the divergence of the Poynting vector,
we find (using the product rule for derivatives): ¢ & _ . (Ex[jl): . (ﬁ y E)—E ‘ (ﬁ xf[)

B - -~ - 0D
Using Faraday’s law ﬁxE:_a_B and Ampere-Maxwell’s law VXH:JerE this entails:
ot
- - - ( 0B) (=~ =D _ -~ (. 0B - oD
V- S=H:\-—|-|E-J,+E-—|=-E-J,-|H-—+E-—
ot ot ot t
. 0D - OB E.D 7.B) olu, +
Since for a linear medium E_8_+H'8_218(E D)+16(H B): (ue, u’"“g) where
ot t 2 ot 2 ot ot
1 - . .
u, —EE.D—>electrlcenergyden31ty We thenget: V.S =—E ']f __t(”ez +”mag) or
Upgg = 5 H - B — magneticenergy density 5
u — — — —
— o = Jf +V-S
ot
In integral form (integrating over a finite volume) : aUem _ —NdrV-§
- Somechanical T
- Poynting’s theorem (e.m. energy theorem): ot

The loss of electromagnetic energy in a given volume of space is equal to the flux of
Poynting’s vector (which carries energy out of the volume) plus the power used to
accelerate charges. (the latter is equal to Joule’s heat for steady currents inside a conductor )

Electromagnetic waves (light) in vacuum

a FE
Maxwell’s eq. ‘?xE=—% VxB= Mu%ﬁ ?K?KE=_E?KB=_WQW
(in vacuum) ' = a #B
V. E=0 v.B=0 ?K?KB=MQ§?KE=—F¢’%$
Using the vector identity: ¥ X (¥ x ¥1=V(V:V)=7*¥Y we get the:
2 = 1 azE _
e.m.wave | [VE-75770 Speed of c=— 1 =3.10°m/s
. )= propagation: NENIA
equatlons ,= 1 0°B
V'B-— P 0 c=1/,/8.85-105°C*m kg Y4z 10" mkgC?)
C

In 1D: d_zy_Ldzy 0 = harmonic  |y(x,) = Asin(@ —kx+¢@,)
dx* ¢ dr’ solution: conw/k=Af=c

In3D, k and y are vectors: Y(F,t):;lsin(a)t—lg-F+g00)

0
V-B=0 —> k1lE ,k1lB,BlEFE
Vx E=_22 | -2 e.m.waves are transverse waves
- in vacuum, Faraday’s law implies B = E/c

the direction of E is called polarization of the e.m. wave (light) E




E.m. waves in nonmagnetic linear dielectrics
with no free charges nor currents (ideal dielectrics)

Maxwell equations for a nonmagnetic, nonconducting medium ( £, =1):

f D
VxH=J,+ b
ot ~ ~
B - oD - = = 0°D
JoxEg-_9 => VxB=py - VxVxE=p
t
- (with J,=0)
V-B=0 !
LY_7-D =P, o=
Using the linear constitutive relation for D, we get: VE= HE.E, 8—2
!

1 1 c
This is the wave equation of waves propagating with speed vV, = = c=—
VEEo g A n

. . C .
where n=,/¢. = refraction index and v, =— = phase velocity
n

OB _ _ _
From Faraday’s law we get VxE=—"—"=kxE =—wB, :‘BO‘:E‘EO‘:—:n—
ot v, c
&, is the dielectric constant of electrostatics. If £, did not depend on frequency, n would be
constant. This is only true in the low-frequency limit, while in general £ and n depend on m.

£ _ I

Light as electromagnetic energy: |rrad|ance

1
Energy density ( u ) associated with E and B fields : « 2808 E*; u, =

e B2 =
2%% (with 2. =1)

2 2
Since B_ =,& — ,itis u, ! B =" E—zlgﬂgEzzu = u =u+u =&&kE()
r 2/,10 2/,!0 2 2 r“0 e e.m. e m r<0

Visible Ilght w, Vv~ 1015 Hz , the time variation of E can’t be measured, nor that of u !!! We can
only measure time averages such as that of the energy density < u >. For a harmonic wave:

. : 1
U, =&&E1) =¢¢E, sin* (o) = (u,, ) =¢&6F, <sm2 (a)t)> = EgrgoE(f

<> = time average
Energy flux divided by area = energy transported by the wave per unit time and area.

For a plane wave in vacuum:

A=1 E,é — k :> AVol=1IlA=v ANt
U jot =t < em>AVOZA:I,At:1 :Vf<uem> =0

u

E:vat

—

The flux is in the direction of k. In vector form : S=ExH= CDME S =Poynting’s vector

In fact, g, f7 is parallel to f , and ‘g(f)(=EH=EB/,uO: ()/(,Uo ) v, 8€0E(t)2

The time-averaged energy crossing a surface per unit time and unit surface is called irradiance,
and it equals the time average value of the modulus of § . For a monochromatic e.m. wave:

1
J= <S> =V, <“Lm> =3 E; NOTE: light (e.m. wave) carries not only energy,
HoV but also linear and angular momentum




Types of light: spectral ranges

1nm

harmonic waves travelling at speed c (or ¢/n): A f=c (orc/n)
fis a constant = A (inside dielectric) = A(vacuum)/n =A,/n
Wave frequency (and vacuum wavelength) is associated with COLOR

Boundary conditions in optics

... D n
VxH:Jf+a—D ij_‘ -
ot f*m-.____,_ﬂz v B:O

§XE=—8—B /fi’-___.___——)/ :B _B

ot & T nl = “n2
V.B=0 In
- 2
V-D=p, -

vxE=-% = [E, =E,

(the flux of B through the area da goes to zero in
the limit that the segments d€, and d¢, tend to
merge — they are taken just across the boundary)

Normally there is neither free surface charge nor free surface current on the interface. In such
case the four boundary conditions that must be satisfied (for linear media) are:
€1E11 =€E21 and By = By,

Ey =E and By /pu =By /u2
Usually in optics one deals with nonmagnetic media. Even in the case of soft ferromagnets, the

magnetization cannot follow applied fields at frequencies higher than few MHz, so that the
contribution of M to B at IR or optical frequencies is negligible. Hence the boundary conditions

for optical fields become simply:

B=const ,E,=const, €1 E1] =€2Ey]




Reflection & refraction at a planar interface

Boundary between media: light is partially reflected (R) and reflected nI nT
partially transmitted (T) (that is, refracted). The E (or B) field
on the left-hand side of the boundary is the sum of E, and E;, transmitted
on the other side it is equal to E;

Boundary conditions in optics: B = const, E,, = const

- There exists a fixed relation between the fields at all points
7 of the boundary. For a monochromatic incident wave, this
implies that the three waves (incident, reflected & transmitted) incident
must have equal total phase : k, -7 —w,t =k, -7 —w t =k, -7 — ,t
Setting the origin » = 0 at a point on the boundary, at the origin —®,f = —@,f = —®;t , hence

D =0. =0 ( consistent with the definition of photon and with energy conservation)
R T
Fort=0: k, - 7=k, 7=k, -7 = k,, k and kT are coplanar

Taking 7 to be coplanar with the wave vectors we get: &, -7 =k, -7 = k,rsin@, = k,rsin @,
This implies: k,sin@, =k, sin@, =k, sin 6,

= law of specular 9. =60 (incident and reflected waves propagate in the same medium
reflection ! of refractive index n, > they have the same value of |k|)

= Snell’slaw |n,sin@, =n,sind,| (the transmitted wave propagates in medium with n, = n,
with same frequency as the incident wave - A changes)

Reflectance for normal incidence

Boundary conditions in optics: B = const, E,, = const . E
For light impinging at normal incidence on a planar ! — -
boundary this implies: (» . - _p 0=0° I k,
{BOI +B R _BOT _________ é |
+ = I r
From Faraday’s law: o o o ke
L ny | n
VxE = —a—B:>kE = B, :>B—E —nﬂ I T
ot ok c
E +E _ =E
— 01 OR or The minus sign takes into account the change in relative
nkE, \gnE,, =nE, orientation of E & B in the reflected wave (as ]}'R — _];I )
Solving for the transmitted and reflected field amplitudes:
E,, = 2n, E,, We thus get:
nl +nT E n n ~ ‘E ‘2 ‘2
or _ "ty ) n,—n
E, Mg Z o, | R=E=—27="—T"| | REFLECTANCE
L o My Ty R ‘Eoz‘ n, +nT‘
The transmittance 7' is defined as 7' = T For energy conservation, it must be: R+7 =1
N)

I
NOTE: reflectance and transmittance are the same if light impinges from one side or the other.

For the air-glass interface (e.g. at a clean window), R is about 4% at normal incidence, so a
window reflects at least 8% of the incoming light (R increases with increasing incidence angle)



Specular reflection vs Diffuse reflection

http://www.youtube.com/watch?v=hBQ8fh Fp04&feature=related

Refraction in non-homogeneous media: mirages

X
Consider an inhomogeneous medium whose refractive index varies with the vertical coordinate
y . A light ray undergoes refraction wherever there is a change of refractive index. Due to Snell’s

law, since n is varying continuously with y, a light wave travelling through this medium
undergoes a continuous refraction 2> mirages;

(a) Cool air

R 4

v . -
L=t

. e t% I
Apparent reflecting T=-—o "

T TR T - Hot air
- — —

—
—

surface

http://www.youtube.com/watch?v=d8zUHBbflmM

GRIN waveguide

This effect leads to the phenomenon of
mirages, and is also exploited commercially to

achieve so-called graded-index materials R e Wt

(GRIN), used for lenses, waveguides and fibers.




